001     858239
005     20240712112943.0
024 7 _ |a 10.1038/s41563-018-0088-3
|2 doi
024 7 _ |a 1476-1122
|2 ISSN
024 7 _ |a 1476-4660
|2 ISSN
024 7 _ |a pmid:29867166
|2 pmid
024 7 _ |a WOS:000436341400012
|2 WOS
024 7 _ |a altmetric:43361705
|2 altmetric
037 _ _ |a FZJ-2018-07139
082 _ _ |a 610
100 1 _ |a Faisal, Firas
|0 0000-0002-9016-2155
|b 0
245 _ _ |a Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes
260 _ _ |a Basingstoke
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552649814_21969
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1,2,3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a Ab initio study of amorphous Sb (jara0176_20171101)
|0 G:(DE-Juel1)jara0176_20171101
|c jara0176_20171101
|f Ab initio study of amorphous Sb
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stumm, Corinna
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bertram, Manon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Waidhas, Fabian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lykhach, Yaroslava
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cherevko, Serhiy
|0 P:(DE-Juel1)168567
|b 5
700 1 _ |a Xiang, Feifei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ammon, Maximilian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vorokhta, Mykhailo
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Šmíd, Břetislav
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Skála, Tomáš
|0 0000-0003-2909-9422
|b 10
700 1 _ |a Tsud, Nataliya
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Neitzel, Armin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Beranová, Klára
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Prince, Kevin C.
|0 0000-0002-5416-7354
|b 14
700 1 _ |a Geiger, Simon
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kasian, Olga
|0 0000-0001-6315-0637
|b 16
700 1 _ |a Wähler, Tobias
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Schuster, Ralf
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Schneider, M. Alexander
|0 0000-0002-8607-3301
|b 19
700 1 _ |a Matolín, Vladimír
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Mayrhofer, Karl
|0 P:(DE-Juel1)168125
|b 21
700 1 _ |a Brummel, Olaf
|0 0000-0001-5968-0774
|b 22
|e Corresponding author
700 1 _ |a Libuda, Jörg
|0 P:(DE-HGF)0
|b 23
|e Corresponding author
773 _ _ |a 10.1038/s41563-018-0088-3
|g Vol. 17, no. 7, p. 592 - 598
|0 PERI:(DE-600)2088679-2
|n 7
|p 592 - 598
|t Nature materials
|v 17
|y 2018
|x 1476-4660
856 4 _ |u https://juser.fz-juelich.de/record/858239/files/s41563-018-0088-3.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858239/files/s41563-018-0088-3.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:858239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)168125
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21