000858245 001__ 858245
000858245 005__ 20240610115733.0
000858245 0247_ $$2doi$$a10.1088/1367-2630/aaf544
000858245 0247_ $$2Handle$$a2128/21500
000858245 0247_ $$2WOS$$aWOS:000456276000007
000858245 0247_ $$2altmetric$$aaltmetric:54109502
000858245 037__ $$aFZJ-2018-07145
000858245 082__ $$a530
000858245 1001_ $$0P:(DE-Juel1)162464$$aRode, Sebastian$$b0$$eCorresponding author$$ufzj
000858245 245__ $$aSperm motility in modulated microchannels
000858245 260__ $$a[London]$$bIOP73379$$c2019
000858245 3367_ $$2DRIVER$$aarticle
000858245 3367_ $$2DataCite$$aOutput Types/Journal article
000858245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552413971_13873
000858245 3367_ $$2BibTeX$$aARTICLE
000858245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858245 3367_ $$00$$2EndNote$$aJournal Article
000858245 520__ $$aSperm cells swim through the fluid by a periodic wave-like beating of their flagellum. At low Reynolds numbers and in confinement, the directed motion of sperm and other microswimmers is strongly influenced by steric and hydrodynamic wall interactions. We model sperm motility in mesoscale hydrodynamics simulations by imposing a planar traveling bending wave along the flagellum. Sperm are simulated swimming in curved, straight, shallow and zigzag-shaped microchannels. Changes in the sidewall modulations and the imposed beat pattern allow the identification of a strong dependence of the surface attraction on the beat-shape envelope of the sperm cell. For swimming in zigzag microchannels, the deflection-angle distribution at sharp corners is calculated and found to be in good agreement with recent microfluidic experiments. The simulations reveal a strong dependence of the deflection angle on the orientation of the beat plane with respect to the channel sidewall, and thus deepen the understanding of sperm navigation under strong confinement. Detachment of sperm, while swimming along curved walls, is dominated by the change of beat- plane orientation. Therefore, either the emergence of a nonplanar component of the flagellar beat with increasing wavelength or the strong confinement in shallow channels drastically increases wall attraction. Our simulation results reveal a consistent picture of passive sperm guidance that is dominated by the steric interactions of the beat pattern with the nearby surfaces.
000858245 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000858245 536__ $$0G:(DE-Juel1)jiff26_20110501$$aHydrodynamics of Active Biological Systems (jiff26_20110501)$$cjiff26_20110501$$fHydrodynamics of Active Biological Systems$$x1
000858245 588__ $$aDataset connected to CrossRef
000858245 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b1$$ufzj
000858245 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000858245 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/aaf544$$p013016$$tNew journal of physics$$v21$$x1367-2630$$y2019
000858245 8564_ $$uhttps://juser.fz-juelich.de/record/858245/files/8109957_0.pdf
000858245 8564_ $$uhttps://juser.fz-juelich.de/record/858245/files/8109957_0.pdf?subformat=pdfa$$xpdfa
000858245 8564_ $$uhttps://juser.fz-juelich.de/record/858245/files/Rode_2019_New_J._Phys._21_013016.pdf$$yOpenAccess
000858245 8564_ $$uhttps://juser.fz-juelich.de/record/858245/files/Rode_2019_New_J._Phys._21_013016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858245 8767_ $$92018-12-05$$d2018-12-06$$eAPC$$jZahlung erfolgt$$paaf544
000858245 909CO $$ooai:juser.fz-juelich.de:858245$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000858245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162464$$aForschungszentrum Jülich$$b0$$kFZJ
000858245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b1$$kFZJ
000858245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000858245 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000858245 9141_ $$y2019
000858245 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000858245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858245 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2017
000858245 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858245 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858245 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858245 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858245 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858245 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858245 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858245 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858245 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858245 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858245 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000858245 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000858245 9801_ $$aAPC
000858245 9801_ $$aFullTexts
000858245 980__ $$ajournal
000858245 980__ $$aVDB
000858245 980__ $$aI:(DE-Juel1)ICS-2-20110106
000858245 980__ $$aI:(DE-82)080012_20140620
000858245 980__ $$aAPC
000858245 980__ $$aUNRESTRICTED
000858245 981__ $$aI:(DE-Juel1)IBI-5-20200312
000858245 981__ $$aI:(DE-Juel1)IAS-2-20090406