000858253 001__ 858253
000858253 005__ 20220930130203.0
000858253 0247_ $$2doi$$a10.3389/fnhum.2018.00443
000858253 0247_ $$2Handle$$a2128/20344
000858253 0247_ $$2pmid$$apmid:30467468
000858253 0247_ $$2WOS$$aWOS:000449612900001
000858253 0247_ $$2altmetric$$aaltmetric:51527516
000858253 037__ $$aFZJ-2018-07152
000858253 082__ $$a610
000858253 1001_ $$0P:(DE-Juel1)142359$$aZhang, Ke$$b0
000858253 245__ $$aComparison of Resting-State Brain Activation Detected by BOLD, Blood Volume and Blood Flow
000858253 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000858253 3367_ $$2DRIVER$$aarticle
000858253 3367_ $$2DataCite$$aOutput Types/Journal article
000858253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544169830_4521
000858253 3367_ $$2BibTeX$$aARTICLE
000858253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858253 3367_ $$00$$2EndNote$$aJournal Article
000858253 520__ $$aResting-state brain activity has been widely investigated using blood oxygenation level dependent (BOLD) contrast techniques. However, BOLD signal changes reflect a combination of the effects of cerebral blood flow (CBF), cerebral blood volume (CBV), as well as the cerebral metabolic rate of oxygen (CMRO2). In this study, resting-state brain activation was detected and compared using the following techniques: (a) BOLD, using a gradient-echo echo planar imaging (GE-EPI) sequence; (b) CBV-weighted signal, acquired using gradient and spin echo (GRASE) based vascular space occupancy (VASO); and (c) CBF, using pseudo-continuous arterial spin labeling (pCASL). Reliable brain networks were detected using VASO and ASL, including sensorimotor, auditory, primary visual, higher visual, default mode, salience and left/right executive control networks. Differences between the resting-state activation detected with ASL, VASO and BOLD could potentially be due to the different temporal signal-to-noise ratio (tSNR) and the short post-labeling delay (PLD) in ASL, along with differences in the spin-echo readout of VASO. It is also possible that the dynamics of spontaneous fluctuations in BOLD, CBV and CBF could differ due to biological reasons, according to their location within the brain.
000858253 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000858253 588__ $$aDataset connected to CrossRef
000858253 7001_ $$0P:(DE-Juel1)161223$$aHuang, Dengfeng$$b1
000858253 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$eCorresponding author
000858253 773__ $$0PERI:(DE-600)2425477-0$$a10.3389/fnhum.2018.00443$$gVol. 12, p. 443$$p443$$tFrontiers in human neuroscience$$v12$$x1662-5161$$y2018
000858253 8564_ $$uhttps://juser.fz-juelich.de/record/858253/files/2018-0134186-4.pdf
000858253 8564_ $$uhttps://juser.fz-juelich.de/record/858253/files/2018-0134186-4.pdf?subformat=pdfa$$xpdfa
000858253 8564_ $$uhttps://juser.fz-juelich.de/record/858253/files/fnhum-12-00443.pdf$$yOpenAccess
000858253 8564_ $$uhttps://juser.fz-juelich.de/record/858253/files/fnhum-12-00443.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858253 8767_ $$82018-0134186-4$$92018-10-15$$d2018-12-06$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2256.75 USD
000858253 909CO $$ooai:juser.fz-juelich.de:858253$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000858253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000858253 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000858253 9141_ $$y2018
000858253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858253 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858253 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT HUM NEUROSCI : 2017
000858253 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858253 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858253 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858253 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858253 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858253 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000858253 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858253 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000858253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858253 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000858253 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000858253 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000858253 980__ $$ajournal
000858253 980__ $$aVDB
000858253 980__ $$aUNRESTRICTED
000858253 980__ $$aI:(DE-Juel1)INM-4-20090406
000858253 980__ $$aI:(DE-82)080010_20140620
000858253 980__ $$aI:(DE-Juel1)INM-11-20170113
000858253 980__ $$aAPC
000858253 9801_ $$aAPC
000858253 9801_ $$aFullTexts