001     858302
005     20210129235916.0
024 7 _ |a 10.1021/acs.jcim.8b00582
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a 2128/21489
|2 Handle
024 7 _ |a pmid:30513206
|2 pmid
024 7 _ |a WOS:000457206200047
|2 WOS
024 7 _ |a altmetric:52541482
|2 altmetric
037 _ _ |a FZJ-2018-07190
082 _ _ |a 540
100 1 _ |a Dittrich, Jonas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Converging a Knowledge-Based Scoring Function: DrugScore2018
260 _ _ |a Washington, DC
|c 2019
|b American Chemical Society64160
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548919998_21932
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present DrugScore2018, a new version of the knowledge-based scoring functionDrugScore, which builds upon the same formalism used to derive DrugScore, but exploits atraining data set of nearly 40,000 X-ray complex structures, a highly diverse and the by farlargest dataset ever used for such an endeavour. About 2.5 times as many pair potentials thanbefore now have a data basis required to yield smooth potentials, and pair potentials could nowbe derived for eight more atom types, including interactions involving halogen atoms and metalions highly relevant for medicinal chemistry. Probing for dependence on training data set sizeand quality, we show that DrugScore2018 potentials are converged. We evaluated DrugScore2018in comprehensive scoring, ranking, docking, and screening tests on the CASF-2013 dataset,allowing for a comparison with >30 other scoring functions. There, DrugScore2018 showedsimilar or improved performance in all aspects when compared to either DrugScore,DrugScoreCSD, or DSX and was, overall, the scoring function showing a most consistently goodperformance in scoring, ranking, and docking tests. Applying DrugScore2018 as objectivefunction in AutoDock3 in a large-scale docking trial, using 4,056 protein-ligand complexesfrom PDBbind 2016, reproduced a docked pose to within 2 Å RMSD to the crystal structure in>75% of all dockings. These results are remarkable as the DrugScore2018 potentials werederived from crystallographic information only, without any further adaptation using bindingaffinity or docking decoy data. DrugScore2018 should thus be a competitive scoring andobjective function for structure-based ligand design purposes.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmidt, Denis
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pfleger, Christopher
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jcim.8b00582
|g p. acs.jcim.8b00582
|0 PERI:(DE-600)1491237-5
|n 1
|p 509–521
|t Journal of chemical information and modeling
|v 59
|y 2019
|x 1549-960X
856 4 _ |u https://juser.fz-juelich.de/record/858302/files/acs.jcim.8b00582.pdf
|y Restricted
856 4 _ |y Published on 2018-12-04. Available in OpenAccess from 2019-12-04.
|u https://juser.fz-juelich.de/record/858302/files/Manuskript_DS2018_revision_final_JD_HG.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/858302/files/acs.jcim.8b00582.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858302
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21