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1 Abstract 

We present DrugScore2018, a new version of the knowledge-based scoring function 

DrugScore, which builds upon the same formalism used to derive DrugScore, but exploits a 

training data set of nearly 40,000 X-ray complex structures, a highly diverse and the by far 

largest dataset ever used for such an endeavour. About 2.5 times as many pair potentials than 

before now have a data basis required to yield smooth potentials, and pair potentials could now 

be derived for eight more atom types, including interactions involving halogen atoms and metal 

ions highly relevant for medicinal chemistry. Probing for dependence on training data set size 

and quality, we show that DrugScore2018 potentials are converged. We evaluated DrugScore2018 

in comprehensive scoring, ranking, docking, and screening tests on the CASF-2013 dataset, 

allowing for a comparison with >30 other scoring functions. There, DrugScore2018 showed 

similar or improved performance in all aspects when compared to either DrugScore, 

DrugScoreCSD, or DSX and was, overall, the scoring function showing a most consistently good 

performance in scoring, ranking, and docking tests. Applying DrugScore2018 as objective 

function in AutoDock3 in a large-scale docking trial, using 4,056 protein-ligand complexes 

from PDBbind 2016, reproduced a docked pose to within 2 Å RMSD to the crystal structure in 

>75% of all dockings. These results are remarkable as the DrugScore2018 potentials were 

derived from crystallographic information only, without any further adaptation using binding 

affinity or docking decoy data. DrugScore2018 should thus be a competitive scoring and 

objective function for structure-based ligand design purposes. 
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2 Introduction 

In computational chemistry, scoring functions (SFs) aim on evaluating (“score”) 

interactions between binding partners such as in protein-ligand complexes. SFs are frequently 

used in molecular docking,1 virtual screening,2, 3 and other drug discovery applications.4 Since 

the early 1990s, a myriad of SFs has been published.5-19 These SFs can be classified into four 

categories.20 I) SFs based on force fields derived from physical principles to describe 

interatomic repulsion and attraction forces;21 II) empirical approaches that use measured 

binding affinities to weight physics-based terms; III) knowledge-based SFs that use 

experimental structural data to derive statistical, potential of mean force-related preferences; 

IV) machine learning approaches that consider some or all of the above features and other 

chemical and structural descriptors of proteins and ligands. 

In 2000, we introduced the knowledge-based SF DrugScore.22, 23 Here, distance-dependent 

pair potentials were derived from crystal structures of 1,376 protein-ligand complexes, taken 

from the Protein Data Bank (PDB).24 DrugScore was the first knowledge-based SF that included 

both distance-dependent pair potentials and solvent-accessible surface (SAS)-dependent singlet 

preferences of protein and ligand atoms. Initially, DrugScore was used for scoring given 

protein-ligand complexes25-28 and later successfully applied also as objective function in 

molecular docking29-33 using AutoDock334 as a docking engine. In 2005, pair potentials were 

derived following the DrugScore formalism but using structural information from the 

Cambridge Structural Database35 (CSD) resulting in DrugScoreCSD.36 The large amount of 

available small-molecule organic and metal-organic crystal structures in the CSD database 

allowed deriving new potentials for atomic interactions, which were so far not available or 

underrepresented in DrugScore. Later on, the DrugScore formalism was applied to derive pair 

potentials to score RNA-ligand complexes37 (DrugScoreRNA) and protein-protein complexes38 

(DrugScorePPI).The latest DrugScore variant is DrugScore eXtended39 (DSX), which uses 68 

atom types as defined by fconv40 instead of the 18 Sybyl atom types used originally, and newly 

defined solvent accessible surface-dependent potentials; the addition of novel knowledge-based 

torsion angle potentials enables one to use DSX as a stand-alone tool for energy minimization 

of ligand poses. 

As with all statistical approaches, the accuracy and scope of knowledge-based SFs strongly 

depends on the amount of available data for derivation. Over the last years, the number of 

structures deposited in the PDB increased exponentially due to the improvement of methods 

for determining biomolecular structures.41 Currently, the PDB contains more than 143,000 

entries with structural information, including >130,000 protein-complexes. On this account, 
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other popular knowledge-based SFs, which have been originally developed before or around 

the year 2000, have been re-derived in the past, including the SFs PMF 12, 14 by Muegge et al. 

and SMoG42, 43 by Shakhnovich et al.. Still, the number of structures used for the re-derived 

PMF0414 is closer to the number of structures used to derive DrugScore potentials22 than to the 

number of available protein-ligand complexes today. Likewise, the knowledge-based part of 

the hybrid (knowledge-based and empirical) SF SMoG2016 finally was derived from 1,038 

protein-ligand complexes, as the SMoG approach only benefited marginally from an increased 

amount of data. 

In this study, we investigated the influence of quality and quantity of structural data used 

to derive distance-dependent pair potentials for protein-ligand interactions in the context of the 

DrugScore approach on the performance of this knowledge-based SF. In particular, we aimed 

to see if converged knowledge-based potentials can be obtained with the current amount of 

structural data. As a training set for what will be termed DrugScore2018 potentials, we used 

nearly 40,000 protein-ligand complex structures taken from the PDB and, hence, the by far 

largest dataset ever used for such an endeavour. The dataset was assessed with respect to ligand 

diversity and drug-likeness as well as a potential bias caused by overrepresented protein classes. 

The performance of DrugScore2018 was evaluated in comprehensive scoring and docking 

experiments building upon established test sets, allowing for a thorough comparison with more 

than 20 stand-alone (or part of a software suit) SFs and more than ten SFs implemented in 

docking programs: (I) We used the “Comparative Assessment of Scoring Functions” (CASF)-

2013 test set,44, 45 which consists of four tests that challenge the scoring (correlation of measured 

and computed affinities), ranking (preference of high- over low-affinity ligands), docking 

(reproduction of ligand poses), and screening (enrichment of known ligands over decoys) 

capabilities of SFs and (II) we used DrugScore and DrugScore2018 potentials as objective 

functions in a large-scale docking experiment with 4,056 protein-ligand complex structures 

taken form the “Refined Set” of PDBbind 201646, 47 dataset. Overall, our results reveal that 

DrugScore2018 potentials are converged with respect to training data set size and quality and 

should be a competitive scoring and objective function for structure-based ligand design 

purposes. 
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3 Methods 

Deriving DrugScore2018 Potentials. Protein-ligand complexes for the dataset to derive 

DrugScore2018 potentials were downloaded from the PDB (date Feb. 12th, 2017). PDB entries 

with a resolution larger than 2.5 � were excluded from the data set in order to reduce the amount 

of imprecise structures, as done in the original approach.22 OpenEye’s OEChem toolkit48 

(version 2.1.4) was used to assign Sybyl atom types and to separate each PDB entry into the 

protein (including crystal water), ligand, and other components. Ions were treated as part of the 

receptor unless they were explicitly part of the ligand. We evaluated distances between ligand 

atoms and their respective receptor atoms (consisting of protein, ions, and other ligands 

including cofactors) within a radius of 6 � around the ligand atoms to emphasize specific 

interactions formed by a ligand with neighboring residues in the binding site; this limit is short 

enough not to involve a water molecule as mediator of a ligand-to-protein interaction.22 To 

reduce a potential bias of the derived potentials with respect to certain ligands, complexes with 

ligands that occur more frequently than 500 times within the PDB were excluded. Furthermore, 

ligands with <10 and >100 heavy atoms were excluded, as were ligands with missing 

(unresolved) atoms. Finally, not more than four identical ligands per PDB structure were 

allowed for deriving DrugScore2018 potentials. However, excluded ligands may still be part of 

the receptor structure. 

Potentials were derived as described for DrugScore potentials.22, 23 The compilation of 

distance-dependent pair potentials between ligand atoms i and protein atoms ݆ grouped by their 

atom types,	ܶሺ݅ሻ and ܶሺ݆ሻ, respectively, is based on an inverse Boltzmann approach and a 

formalism developed by Sippl49 (eq. (1)), 

∆ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ ൌ െ ln
்݃ሺ௜ሻ,்ሺ௝ሻሺݎሻ

݃ሺݎሻ
 (1) 

where ݃ ்ሺ௜ሻ,்ሺ௝ሻሺݎሻ denotes the normalized radial pair distribution for atom types ܶ ሺ݅ሻ and ܶ ሺ݆ሻ, 

calculated from their respective occurrence frequency in the distance interval ሾݎ; ݎ ൅  ሻ withݎ݀

 ሻ is the normalized mean radial pair distribution function for a distanceݎÅ, and ݃ሺ 0.1 = ݎ݀

between two atoms in the interval of ሾݎ; ݎ ൅  ሻ, incorporating all non-specific informationݎ݀

common to all atom pairs in the protein-ligand complexes (eqs. (2,3)): 

்݃ሺ௜ሻ,்ሺ௝ሻሺݎሻ ൌ 	
்ܰሺ௜ሻ,்ሺ௝ሻሺݎሻ/4ݎ²݀ݎߨ

∑ ሺ்ܰሺ௜ሻ,்ሺ௝ሻሺݎሻ/4ݎ²݀ݎߨሻ௥
; ݃ሺݎሻ ൌ

∑ ∑ ்݃ሺ௜ሻ,்ሺ௝ሻሺݎሻ்ሺ௝ሻ்ሺ௜ሻ

‖ܶሺ݅ሻ‖ ⋅ ‖ܶሺ݆ሻ‖
 (2,3) 
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Scoring Protein-Ligand Complexes. The total score describing the protein-ligand 

interaction is the sum of all occurring atom-atom interactions, i.e., interactions between atoms 

݅ of the ligand ܮ and atoms j of the protein ܲ (eq. (4)): 

∆ܹ ൌ	෍෍∆ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ
௝∈௉௜∈௅

 (4) 

In this work we neglect the contribution of the SAS-dependent singlet preferences 

originally derived for DrugScore, as in subsequent studies predominantly the pair potentials 

were used as scoring23, 50 and objective29-33 function. Therefore, for scoring with DrugScore, 

DrugScoreCSD, and DrugScore2018, we only applied pair potentials derived from the respective 

dataset (CSD and PDB). For scoring with DSX, we only considered pair potentials derived from 

the PDB (DSXPDB::PAIR). For a more comprehensive description of the theory behind 

DrugScore, please see here22, 23, 36-38. 

 

Assessment of the Training Data Set. The data set for deriving DrugScore2018 potentials 

was evaluated with respect to ligand diversity and the influence of the largest protein cluster on 

the potentials. To assess ligand diversity, extended-connectivity fingerprints51 with a radius of 

two atoms (ECPF4) were generated for each ligand in the training data set, and then all pair-

wise Tanimoto similarities were calculated using the OEChem toolkit.48 

The coverage of the ligand chemical space52 by the training data set was compared to that 

by the ChEMBL23 database53 by means of a principal component analysis (PCA) of the space 

spanned by the molecular quantum numbers (MQNs).54 MQNs are a set of 42 1D-descriptors 

(e.g., atom counts, bond counts, polarity counts, and topology counts), which can be used to 

map and visualize the chemical space covered by molecules of different databases.54, 55 MQNs 

were calculated for all ligands in the training data set and the ChEBML23 database44 using the 

MQN software of the Reymond group.54 Unlike ref.54, the 42 MQN descriptors were normalized 

separately to zero-mean and unit variance. The principal components were calculated from the 

normalized data, and the two sets of ligands were compared in terms of projections onto the 

first two principal components. 

To test for a potential bias due to frequently represented protein families, the used PDB 

structures were first clustered by their Pfam-IDs.56 The largest cluster consisted of 1,041 

complexes with a single protein kinase domain. The redundant occurrence of certain proteins 

does not necessarily induce bias in the DrugScore potentials per se, as only interactions with 

the first shell of residues in the binding site are evaluated. Yet, kinase ligands are inherently 

structurally similar and bind to similar binding sites. Consequently, certain interaction distances 
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might be overrepresented. Hence, the complexes of the largest cluster were removed from the 

data set, the potentials were re-derived and compared to those derived from the complete set. 

The difference of the DrugScore potentials is quantified by a normalized root-mean-square 

error. This parameter is referred to as Potential Deviation (PD) in this work. The PD between 

two sets of potentials is calculated according to eq. (5), 

ܦܲ ൌ

ඨ∑ ൫ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙ െ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௦௨௕௦௘௧൯²௥
݊

max൫ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙൯ െ min൫ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙൯
 

(5) 

where ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙ is the reference potential for the ligand atom ݅ of type ܶሺ݅ሻ and the 

protein atom ݆ of type	ܶሺ݆ሻ as a function of the distance ݎ for the interval of 2 Å to 6 Å, 

்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௦௨௕௦௘௧ is the corresponding potential derived from a subset, and n is the number of 

distance bins. This value is normalized by the range of values (max൫ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙൯ െ

min	ሺ ்ܹሺ௜ሻ,்ሺ௝ሻሺݎሻ௥௘௙ሻ) covered by the reference potential. A PD value of zero indicates 

identical potentials. 

DrugScore2018 potentials are derived from the PDB, which includes structures of the 

PDBbind Refined Set (2016) and the CASF-2013 set that are later used to asses DrugScore2018’s 

predictive power. To preclude a potential bias in the evaluation, DrugScore2018 potentials were 

additionally derived from the training data excluding all complexes containing proteins present 

in the PDBbind Refined Set (2016) or the CASF-2013 set. If the potentials without these protein 

complexes are almost indistinguishable from the DrugScore2018 potentials including them, a 

bias due to the overlap of training and test set can be neglected, and the potentials derived from 

the whole set can be used in the evaluation. 

 

Convergence of DrugScore Potentials. To assess the convergence of the DrugScore2018 

potentials as a function of the number of protein-ligand complexes used for derivation, 

potentials were derived from subsets with quantities of 1000, 5000, 10,000, 20,000, and 30,000 

training structures, and the corresponding PD was calculated (eq. (5)). To generate the subsets, 

structures were randomly chosen from the training data set. For each subset of given quantity, 

ten independent bootstrap57 sets were sampled allowing for replacement of chosen structures. 

The PD values of ten bootstrap samples were averaged, and the standard error (SEM) was 

calculated. 
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CASF-2013 Test Set. The distance-dependent pair-potentials of DrugScore2018 were 

evaluated on the CASF-2013 test set provided by Li et al..44, 45 All atom types of the structures 

in the CASF-2013 set were assigned using the same routine as described for the training set. 

The CASF-2013 set provides different tests, each assessing different features and abilities of a 

SF, such as their scoring, ranking, docking, and screening performance. Moreover, it establishes 

a basis to compare the performance of different SFs on equal terms. The CASF-2013 set 

consists of 65 different proteins with known binding ligands, their native and generated docking 

poses. For detailed explanations, further information on the test set and on the tested SFs, see 

refs. 44, 45. In this study, we applied four tests, which are defined in ref.45 and briefly described 

below. 

Scoring Power Test. This test assesses the correlation of the SF’s score for the native pose 

of the ligand within the complex to the experimentally determined binding energy. This 

correlation is quantitatively evaluated by Pearson’s correlation coefficient ܴ and standard 

deviation σ between predicted and experimentally determined binding affinities. We also 

calculated Spearman’s rank correlation coefficient ܴ௦, which is the nonparametric analogue of 

R, and therefore is considered more robust.58 The calculations were done using the respective 

functions of the SciPy59 python module (version 1.1.0). 

Ranking Power Test. This test evaluates the SF’s ability to rank known ligands of the same 

target protein by their binding affinities. The test set consists of 65 groups of complexes each 

formed by a protein with three different ligands. If a SF ranks all three ligands according to 

their known binding affinity, this is considered a “high-level” success, and if the SF identifies 

the best binder regardless of the ranking of the medium and poorest binder, this is considered a 

“low-level” success. 

Docking Power Test. Unlike the tests before, this test does not focus on the reproduction of 

experimental affinities but on the capability to identify the correct ligand pose. For each protein-

ligand complex in the test set, the SF scores up to 100 binding poses. These poses were created 

by Li et al. using GOLD7 (version 5.1), Surflex60, 61 as implemented in the SYBYL software 

(version 8.1), and the docking module of the MOE software package (version 2011). The native 

binding pose was also included in this set to ensure that there is at least one correct binding 

pose present. The similarity of the best scored and the native pose is expressed by the root mean 

square deviation (RMSD) (eq. (6)) 
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ܦܵܯܴ ൌ	ඨ
∑ ሺݔ௜ െ ௜ݔ

ᇱሻଶ ൅ ሺݕ௜ െ ௜ݕ
ᇱሻଶ ൅ ሺݖ௜ െ ௜ݖ

ᇱሻ²௡
௜ୀଵ

݊
 (6). 

Here ݊ is the total number of atoms within the ligand molecule, ݔ௜,	ݕ௜,	ݖ௜ and ݔ௜
ᇱ, ௜ݕ

ᇱ, ௜ݖ
ᇱ are the 

Cartesian coordinates of the ݅௧௛ atom in two binding poses. In order to yield correct results for 

symmetric ligands, Li et al. calculated a property-matched RMSD, called RMSDPM, which 

matches atom pairs between two binding poses by atom types instead of atom IDs. The 

RMSDPM, which is provided for each docking pose, was used to evaluate the docking power of 

the SFs. In this test, the SF is considered successful when it scores a docking pose with an 

RMSDPM < 2 Å compared to the crystal structure as best pose (“Top1”) or within the first two 

(“Top2”) or three (“Top3”) best scored poses. 

Screening Power Test. This test assesses the SF’s ability to distinguish between binding 

and non-binding ligands. The screening power is evaluated in a cross-docking experiment. All 

195 (= 65 x 3) ligands were docked into each of the 65 proteins, yielding 12,675 possible 

protein-ligand combinations in total. For each of the protein-ligand pairs, up to 50 

representative ligand binding poses were generated using above-mentioned docking tools. For 

each protein, all poses are scored with the SF of interest. Subsequently, ligand molecules are 

ranked according to the best score of any of its poses. The success of a SF is measured by 

counting the total number of true binders among 1%, 5%, and 10% of the top ranked molecules. 

 

Docking Into DrugScore2018 Fields. The Refined Set of the PDBbind 201646, 47 was chosen 

as large-scale test set for the evaluation of DrugScore2018 as an objective function in docking. 

This test differs from the above Docking Power Test in that there, DrugScore2018 was evaluated 

as a scoring function for given docked ligand poses. The Refined Set contains 4,056 selected 

protein-ligand complexes with known binding affinities covering a pKi range of ten units. To 

avoid any bias towards the input crystal structure, a single low-energy conformation was 

additionally generated for each ligand using OpenEye’s OMEGA (version 2.5.1.4).62, 63 The 

crystal pose of each ligand and the low-energy conformation were re-docked into the receptor 

crystal structure using AutoDock334 (AD3) in combination with the standard energy function 

of AD3 or the DrugScore and DrugScore2018 potentials as objective functions. Additionally, the 

ligand crystal structures were re-docked using AutoDock4 (AD4).64 

Structure Preparation. The ligands and proteins were prepared using modified 

AutoDockTools64 python scripts for AD3 and AD4 so that (I) all input charges of the ligand 

were preserved and (II) non-polar hydrogens were merged by adding their charge to the carbon 
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atom to which they were bonded and removed from the molecule (united-atom model). Kollman 

charges65 were added to the atoms of the receptor. Additionally, non-polar hydrogens and lone 

pairs of the receptor were merged. For docking using DrugScore2018 potentials, all atom types 

of the input protein and ligand mol2 files were assigned using OpenEye’s OEChem toolkit as 

before. The grid calculation was carried out with AutoGrid3 (for AD3), AutoGrid4 (for AD4), 

or the DrugScore software using the original and new potentials. The standard grid spacing of 

0.375 Å was chosen for all dockings. When docking with AD3/4, the standard grid box of 40 x 

40 x 40 units (15 x 15 x 15 Å3) was placed such that the ligand is centered in the box. For larger 

ligands (~10% of cases), AutoDockTools expanded the box dimensions by multiples of the grid 

spacing (0.375 Å) such that the ligand fits the box. DrugScore automatically ensures a 5 Å 

margin around the ligand along each axis. 95% of the resulting DrugScore grid boxes are at 

least as large by volume as the grid box created by AutoDockTools and ~92% of the boxes are 

at least 10% bigger. Due to the larger configurational space, a positive bias towards DrugScore 

can be excluded when the docking results are compared, as the smaller grid boxes should favor 

the original AutoDock software. 

Docking Protocol. Following established procedures,32, 33 the docking protocol considered 

100 independent runs for each ligand using an initial population size of 100 individuals, a 

maximum number of 27.0 ൈ 10³ generations, a maximum number of 5.0 ൈ	106 energy 

evaluations, a mutation rate of 0.02, a crossover rate of 0.8, and an elitism value of 1. For 

sampling, the Lamarckian Genetic Algorithm (LGA) was chosen in all approaches. In general, 

the standard settings of AutoDock are used, except for the maximum number of energy 

evaluations, which is doubled in this experiment to focus more on the accuracy of the objective 

function than on the efficiency of the sampling algorithm. In order to assess a convergence of 

the docking solutions, the generated docking poses were clustered as to their RMSD with 

AutoDock, using the standard cut-off value of 2 Å. Fewer clusters of docking poses indicate a 

higher convergence of the proposed docking solutions. The docking is considered successful 

when the best scored pose is within 2 Å RMSD of the native pose. In contrast, the best pose by 

RMSD was not considered for evaluation, as this would not be known in a prospective 

approach. 
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4 Results and Discussion 

Assessment of the Training Data Set. The quality of a knowledge-based SF benefits from 

a large and diverse data set for derivation that is representative of the protein and ligand 

application domains. Overall, 39,683 selected protein-ligand complexes were used to derive 

DrugScore2018, covering complexes of 24,570 different proteins and, therefore, representing 

nearly 20% of all available entries of protein-ligand complexes in the PDB. As to the protein 

application domain, 75% of the proteins have been classified as enzymes, where the distribution 

of enzyme classes in the data set closely resembles the distribution within the PDB (identical 

for EC1, deviation < 3.3% for EC2 and EC3, and deviation < 0.3% for EC4 to EC6). The 

remaining 25% of protein-ligand complexes include receptors, antibodies, chaperones, 

transporters, and membrane proteins. As to the ligand application domain, only ligands with 

10–100 heavy atoms where considered in the data set, equivalent to molecular masses between 

~80–600 Da, i.e., the ligands cover fragment-like to drug-like molecules with respect to size. 

The ligands are structurally diverse, shown by the fact that >99% of all pairwise ECFP4-

Tanimoto similarities are <0.2 (Figure 1A). At the same time, the chemical space covered by 

the ligands of the data set considerably overlaps with that of the ChEMBL23 database, as 

demonstrated by a projection of the respective ligands onto the first two principal components 

of the MQN43 space (Figure 1B). This is also true when the first nine PCs are taken into account, 

which explain 60% of the variance in total (Figures S2 and S3). As the ChEMBL23 database 

contains more than 1.7 million entries of predominantly drug-like chemical compounds based 

on information extracted from more than 65,000 publications,66 we considered this database a 

reliable and adequate reference. This overlap of the chemical space covered by both datasets is 

remarkable considering that the ChEMBL23 database contains 43 times more molecules than 

our training set. We conclude that the training data set used to derive DrugScore2018 potentials 

is diverse with respect to proteins and ligands, and representative of the relevant chemical space 

of small-molecule ligands. 

The composition of the training data set is not uniform with respect to protein superfamilies 

and families. In order to probe to what extent this may bias the derived DrugScore2018 potentials, 

we removed all entries that contained only a protein kinase domain, i.e., the largest cluster of 

proteins with respect to their Pfam-ID. Potentials re-derived from the reduced data set show, on 

average, a normalized root mean square deviation (NRMSD), referred to as PD, of <1% from 

the DrugScore2018 potentials derived on the full data set (PDതതതത ൌ 0.0079 േ 0.0010; eq. (5)). 

Similarly, when excluding all structures containing proteins present in the PDBbind Refined 

Set or containing proteins of the CASF-2013 test set (4,635 protein-ligand complexes in total) 
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used for evaluating DrugsScore2018’s predictive power, the average NRMSD is ~2% (PDതതതത ൌ

0.0242 േ 0.0025; eq. (5)). As both of the potentials derived from such reduced data sets are 

virtually indistinguishable from the DrugScore2018 potentials, the latter, derived from the full 

data set, can be used for testing DrugScore2018’s performance without having to expect a 

pronounced bias in the results. We note already now that, to our knowledge, the overlap 

between training data set and data sets used to evaluate a SF’s predictive power has not been 

assessed for other SFs43, 45, 67 with which we will compare DrugScore2018. 

 

Improved Coverage of Atom Types in DrugScore2018. When DrugScore was first 

introduced in 2000, the types and quantity of protein-ligand complexes in the training data set 

allowed deriving interactions between 17 Sybyl atom types. Due to statistical reasons, rare atom 

types such as N.2 (sp²-hybridized nitrogen, e.g. in imines) and N.ar (nitrogen in aromatic rings, 

e.g. in pyridine), or S.2 (sp2-hybridized sulfur, e.g. in thiocarbonyls), S.3 (sp3-hybridized sulfur, 

e.g. in cysteine (thiol group) or methionine (thioether)), S.O (sulfoxide sulfur, e.g. in a thionyl 

group), and S.O2 (sulfone sulfur, e.g. in sulfonyl groups) were combined to yield sufficiently 

populated potentials.22 In DrugScore2018, the 39,683 protein-ligand complexes allowed deriving 

distance-dependent pair potentials for 25 Sybyl atom types. The additional atom types are I, 

C.1 (sp-hybridized carbon, e.g. in alkynes), N.1 (sp-hybridized nitrogen, e.g. in a nitrile group), 

N.2, N.4 (protonated sp3-hybridized nitrogen, e.g. protonated amino groups), S.2, S.O, and 

S.O2. 

We previously found that potentials derived from ≥ 500 pair interactions (i.e., on average, 

10 pair interactions per distance bin) are sufficiently smooth to yield reliable results.36 The 

number of pair-potentials with ≥ 500 pair interactions increased from 117 in DrugScore to 289 

in DrugScore2018 (Figure 2). Particularly, the DrugScore2018 potentials now cover also three 

halogen-mediated interactions and 14 metal-mediated interactions (Figure 2). Panel C and D of 

Figure 2 exemplarily show how potentials of more rarely occurring interactions (cation-π (N.4 

versus C.ar) and, likely, -hole-mediated interactions (I versus O.2)) benefit from an increased 

amount of structural data. In conclusion, the increased amount of data used to derive 

DrugScore2018 potentials now also allows scoring of interactions that are highly relevant for 

medicinal chemistry, including those involving halogen atoms68-71 and metal ions.72 

 

Convergence of DrugScore2018 Potentials. The convergence of the DrugScore2018 

potentials was assessed by also deriving the potentials from multiple, randomly sampled subsets 

with sizes between ~1/40 and ~3/4 of the whole training data set. Convergence was measured 



Converging a knowledge-based Scoring Function: DrugScore2018 12 

 

in terms of the PD from DrugScore2018. As the PD calculation is based on bootstrapping with 

replacement, it yields values >0, including when the complete dataset is used for deriving 

potentials (see also next paragraph). Potentials of frequently occurring interactions, such as C.3-

C.3 (hydrophobic interactions of sp3-hybridized (aliphatic) carbons), O.3-O.2 (interactions of 

h-bond donors (e.g. oxygen in hydroxyl groups)) and acceptors (e.g. oxygen in carbonyl 

groups), and C.ar-C.ar (e.g. π-π stacking of aromatic carbons), are converged already with 5,000 

complexes (PD < 1.8%; Figure 3), whereas rare interactions, such as N.1-C.cat (e.g. interaction 

between sp-hybridized nitrogen (e.g. in a nitrile group) and the carbon of guanidine group of 

an arginine sidechain) or S.3-Met (interactions of sp3-hybridized sulfur atoms and metals (e.g. 

zinc, magnesium) within the binding site of the protein) require up to four-fold more structural 

data (20,000 complexes; PD < 5.4%; Figure 3). Hence, in general, DrugScore2018 potentials are 

converged when >20,000 complexes are used in the training data set. 

Furthermore, the statistical error of the potentials was estimated by bootstrapping with 

replacement. With the full training data set, the median PD amounts to 3.1% of the range of 

DrugScore2018 potential values (Figure 3A), with 46 (158) potentials showing NRMSDs < 1.5% 

(3.0%) (Figure 3B). Very similar results were obtained for potentials derived from the same 

training data set, but now only considering structures with a resolution 2.0 Å (23,087 

complexes; PDmedian = 3.8%). Figure 3A shows that the deviation from the final potentials for 

the smaller subsets converges to the deviation estimated by bootstrapping on the full training 

data set, i.e. the potentials are within the estimated error of the potentials derived from the whole 

training set. This error most likely results from the inherent uncertainty of the used 

experimentally determined protein-ligand complexes. Together with the above analyses on the 

convergence of DrugScore2018 potentials, our results, therefore, indicate that a derivation of 

pair-potentials from more, and higher-quality, complexes will most likely not result in a 

qualitative change of potential values or an improvement in their precision, except for non-

typical pairs of atom types. However, the influence of such pairs on a SF’s overall performance 

can be expected to be low, though. 

 

Evaluation of DrugScore2018 on the CASF-2013 Test Set. CASF-2013 provides different 

tests, each assessing different features and abilities of a SF, such as their scoring, ranking, 

docking, and screening performance, thereby establishing a basis to compare the performance 

of different SFs.44, 45 

Scoring Power Test. The scoring power test evaluates the quality of the correlation of 

predicted binding scores with experimentally determined binding energies.45 The results for the 
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DrugScore variants is shown in Figure 4. For DrugScore2018, an increase in the scoring power 

compared to DrugScore and DrugScoreCSD by ~4% is observed (Figure 4), which is statistically 

significant (p < 0.0001 according to a Steiger test73). One reason for the small improvement in 

scoring power between DrugScore to DrugScore2018, despite the 40-fold increase in the size of 

training data set, may be that the CASF-2013 test set comprises only 33 halogen-containing 

ligands and 23 complexes with a ligand-metal interaction out of 195 complexes, such that the 

particular improvement in the quality of these potentials in DrugScore2018 carries little weight. 

Indeed, when focusing on these 56 complexes, the increase in the scoring power on going from 

DrugScore to DrugScore2018 is about twice as large (Figure S4). 

Compared to other academic and commercial SFs, DrugScore2018 ranks among the best 

three, when ܴ௦ is taken as a measure (Table 1). The only SFs for which a significantly 

(p < 0.0001) better R has been reported are BT-Score,74 AutoDockHybrid,67 and X-ScoreHM 8 

(when R is taken as a measure). Remarkably, SFs achieving better R/R௦ values in this test use 

either multiple-linear fitting (AutoDockHybrid67) or belong to the machine-learning approaches 

(BT-Score74). In this case, the partial overlap of training and test data may contribute to that 

improvement, as shown for BT-Score in Figure 3 of ref. 74, where the resulting correlation of 

predicted versus experimental binding affinities depends on the presence of (close) derivatives 

of the structures in the training set. All SFs fall short of coming close to the theoretical Rmax of 

0.975 (assuming an uncertainty of the experimental values of 0.5 log units and considering the 

standard deviation of the experimental values of 2.25 log units)75 (Table 1), indicating that they 

only provide an approximate estimate for binding affinities, as mentioned before.76-78 Still, for 

non-trained (i.e., no data of binding affinities were used for the derivation of the potentials) SFs 

such as DrugScore2018, the residual range of the regression line of ~1.8 log units (Figure 4) 

indicates that such SFs may be applied to distinguish potential binders from non-binders.78-80 

Ranking Power Test. The result of the ranking power test is shown in panel A of Figure 5. 

The top four SFs, namely DrugScore, DrugScore2018, ChemPLP,19 and X-ScoreHM,8 all achieve 

the same high-level success rate of 58.5% in this test, which details for how many proteins in 

the test set the known binding ligands are ranked in the correct order of their affinities. 

Regarding low-level success rates (i.e., the proportion of cases where the most affine ligand is 

on the top rank), even the first seven SFs, including all three investigated DrugScore variants, 

are comparable. Potential reasons for the very similar behavior of the SFs are the small test set 

size of only 65 protein/ligands combinations and/or the fact that the ligands to be distinguished 

per protein differ, on average, in their binding affinities by ~2.1 log units, which makes ranking 

possible also for less sensitive functions. 
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Docking Power Test. The result of the docking power test is shown in panel B of Figure 5. 

In 81.0% of all cases, DrugScore2018 scores a docking pose with an RMSD ≤ 2 Å as the best 

pose. Only one reference SF (ChemPLP19 as implemented in GOLD) achieves similarly good 

results on the given test set. The best ranked pose by DrugScoreCSD and DrugScore lies in 79.5% 

and 71.8% of all cases within 2 Å RMSD of the correct pose, respectively. The best three SFs 

(two of which are DrugScore derivatives) in this test just differ slightly from each other. When 

the top two poses are considered, DrugScore2018, DrugScoreCSD, and ChemPLP achieve success 

rates of 86.2%, 87.2% and 86.7%, respectively. When the best three scored poses are taken into 

consideration, the respective success rates increase to 88.2%, 89.2% and 89.7%. 

Screening Power Test. In the Screening Power test, the top three performing SFs with 

regard to the enrichment factor are the commercial GlideScore (single (SP) and extra (XP) 

precision, with the single precision method outperforming the extra precision method) and 

ChemScore. GlideScore-SP achieves an EF1% of 19.54% (Table 2). The performances of the 

DrugScore variants differ strongly in this test. DrugScoreCSD ranks at the sixth position with an 

EF1% of 12.69% as the best DrugScore version. DrugScore2018 achieves an EF1% of 6.92% and 

DrugScore one of 4.36%. Interestingly, SFs with high scoring, ranking, and docking power, 

such as X-ScoreHM or DrugScore2018, perform less good in screening trials and vice versa (e.g., 

Glide-SP/XP, LigScore2). This might be the reason why Ashtawy and Mahapatra designed 

task-specific SFs in their approach.74 Furthermore, Glide-SP/XP has been trained on crystal 

ligands as well as decoys docked into a receptor.5 Thus, the setup of the training (separation of 

ligand and decoys) resembles the setup of the application in the Screening Power test. This 

might explain the reduced false positive rate of these SFs in this test compared to DrugScoreCSD 

and DrugScore2018. 

 

Docking Into New DrugScore Fields. In addition to the CASF-2013 set, we evaluated 

DrugScore2018 as objective function in a large-scale docking trial using 4,056 protein-ligand 

complexes from PDBbind 201646, 47, a curated and highly diverse dataset. The overall docking 

performance is evaluated by the RMSD of the best scored pose with regard to the native pose, 

where an RMSD of ≤2 Å is considered to be a success. In Figure 6A, the cumulative frequency 

of the RMSD of the best scored docking pose for each docking run is plotted. Using the 

crystallographic ligand pose as input, AutoDock3 in combination with either DrugScore2018 or 

the built-in SF is able to reproduce this pose to within 2 Å RMSD in >75% of all dockings, 

while AutoDock4 surprisingly only achieves about 59.8% success rate. An overall better or at 

least very similar performance of AutoDock3 compared to AutoDock4 has been observed by 
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us32 and others.64 AutoDock3 in combination with DrugScore still has a 54.3% success rate. 

When the docking is performed using low-energy conformers as input, the success rate of 

AutoDock3 with DrugScore2018 or the built-in SF drops to 62.5% or 58.8%, respectively. 

The observation of the drop in performance when using an input conformer that differs 

from the native pose is congruent with other studies.81-84 One of those studies describes a similar 

assessment of ten SFs by docking as we did here for the DrugScore2018 potentials. The authors 

used the older and smaller PDBbind 2014 data set, which was further filtered by removing 

structures with non-standard residues, cofactors, and ions.81 We did not apply such a filter on 

the larger PDBbind 2016 data set, which is why we consider our test set more challenging. Still, 

the similarity of the test sets and the generation of ligand conformers should allow a comparison 

of published docking performances with the performance of the DrugScore variants described 

here. According to Wang et al., none of the freely available academic and commercially 

available docking tools was able to achieve a success rate of more than 60% in their test when 

the best scored pose is considered.81 LeDock85 performed best (57.4%) in the field of academic 

software, followed by rDock86 (50.3%) and AutoDock Vina87 (49.0%). The best commercially 

available docking software in their test was GOLD7 (59.8%), followed by Glide-XP88 (57.8%) 

and Glide-SP5, 6 (53.8%). Thus, all of these tools performed worse than AutoDock3 with 

DrugScore2018 even on the putatively less challenging data set. 

Besides the ability to reproduce crystallographic ligand poses, we also observed that 

AutoDock3 in combination with DrugScore2018 tends to generate less diverse docking solutions. 

In fact, more than 60% of all generated poses fell within the first cluster of the respective 

docking run, which is higher than AutoDock3 using different objective functions and 

substantially higher than AutoDock4 (Figure 6A, inlay). One example for a better and more 

converged docking is shown in Figure 6B. The docking of the PDB ID 3up2 complex using 

DrugScore2018 potentials (red) led to converged (all docking solutions were clustered into one 

cluster, i.e., all docking poses were within 2 Å RMSD to the cluster representative) docking 

solutions with an RMSD comparable to the native pose. This is a substantial improvement to 

docking with the initial DrugScore potentials (blue) and with standard AutoDock3 (yellow). 

Altogether, in our setup, the combination of AutoDock3 and DrugScore2018 as objective 

function showed the best results with regard to the quality and convergence of generated 

docking solutions. The higher convergence in docking solutions indicates a smoother energy 

landscape of DrugScore2018, which likely facilitates picking the right solution as small structural 

deviations are accommodated. Moreover, this combination of docking engine and objective 
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function has a higher success rate on a presumably more challenging dataset than any software 

tested in ref. 81. 
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5 Concluding remarks 

We presented a new version of the knowledge-based SF DrugScore, DrugScore2018, which 

builds upon the same formalism used to derive the original DrugScore almost 20 years ago, but 

exploits a training data set of X-ray complex structures almost 40 times larger than before. This 

training data set is highly diverse with respect to protein classes and ligands, and represents the 

relevant chemical space of small-molecule drug-like ligands. As a consequence, ~2.5 times as 

many pair potentials than before have a data basis of ≥500 pair interactions required to yield 

smooth potentials, and pair potentials could now be derived for eight more atom types, 

including interactions to halogen atoms and metal ions that are highly relevant for medicinal 

chemistry. Considering a normalized RMSD as a measure, we demonstrated that frequent 

protein-ligand interactions require 5,000 complex structures for derivation to become 

converged, infrequent ones 20,000. Furthermore, our results indicate that a derivation of pair-

potentials from higher-quality complexes will most likely not result in a qualitative change of 

potential values or an improvement in their precision. Hence, we conclude that the 

DrugScore2018 potentials are converged, and further improvement would require modifications 

to the formalism, including, e.g., modified atom type definitions,39 considering three-body 

interactions,89 or adding terms accounting for not yet considered contributions to binding,33 

rather than additional structural data for derivation. Surprisingly, two other re-derived 

knowledge-based SFs, PMF0414 and SMoG201643, did not find merit in using that many 

complex structures. 

When evaluating DrugScore2018 in comprehensive tests on the established CASF-2013 

dataset, the following results stood out: I) As to scoring, DrugScore2018 performs significantly 

better than DrugScore and DrugScoreCSD and ranks among the top three SFs. The residuals of 

predicted versus experimental binding affinities suggest that DrugScore2018 may be used to 

distinguish potential binders from non-binders. II) As to ranking, DrugScore2018 is in the top 

group of four SFs that all achieve the same performance. III) As to docking, DrugScore2018 is 

in the top group formed by two SFs. IV) As to screening, it is found that SFs with high scoring, 

ranking, and docking power, such as DrugScore2018, perform less good in this test and vice 

versa. Finally, in a large-scale docking trial using 4,056 protein-ligand complexes from the 

PDBbind 2016, DrugScore2018 used as an objective function reproduces ligand poses to within 

2 Å RMSD in >75% (63%) of the cases for crystallographic (low-energy) ligand conformations.  

In summary, DrugScore2018 showed similar or improved performance in all aspects when 

compared to either DrugScore or DrugScoreCSD and was, overall, the SF showing the most 

consistently good performance in scoring, ranking, and docking tests. In our view, this result is 
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all the more remarkable as the DrugScore2018 potentials were derived from crystallographic 

information only, without any further adaptation using binding affinity or docking decoy data. 

DrugScore2018, which is freely available from the authors for academic purposes, should thus 

be a competitive scoring and objective function for structure-based ligand design purposes. 
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7 Associated Content 

The Supporting Information is available free of charge on the ACS Publications website. 

Supplementary results on the comparison of characteristic DrugScore potentials, the 

chemical space and PCA of MQNs, and the improved scoring for metal and halogen containing 

complexes are provided. Supplementary figures show a comparison of selected pair potentials 

from DrugScore, DrugScoreCSD, and DrugScore2018 (Figure S1), the variance explained by the 

first nine principle components from the PCA of the molecules of the ChEMBL23 database 

represented by 42 descriptors (MQNs) (Figure S2), the projection of the chemical spaces 

covered by the ligands used for deriving DrugScore2018 pair potentials and the ChEMBL23 

database (Figure S3), and the correlation of binding scores predicted by DrugScore, 

DrugScoreCSD, and DrugScore2018  with experimental binding constants for different subsets of 

the CASF-2013 test set (Figure S4). A supplementary table shows PDB entries with halogen- 

or metal-ligand interactions (Table S1). 
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9 Figures 

TOC Figure Workflow for deriving new DrugScore pair-potentials. 
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Figure 1. (A) Histogram of frequency (blue bars) and cumulative sum (red line) of Tanimoto 

indices for all pairs of ligands used for the new DrugScore2018 potentials. (B) The 

chemical space covered by the ligands (red) in comparison to the ChEMBL 

database (grey) as described by a PCA of 42 1D-descriptors (MQNs). PC1 and PC2 

cover 16.1% and 13.4% of the variance, respectively. 
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Figure 2. Number of pair interactions of the respective atom types of ligand and receptor 

found in the training sets for DrugScore (A) and DrugScore2018 (B). The colors 

depict if >500 (green), <500 (yellow), or no interactions (red) are found. 

Interactions not evaluated in DrugScore potentials are marked by grey 

rows/columns. In panel (A), the atom types S.2, S.O, and S.O2 were merged 

together with S.3, as was N.2 with N.ar. The influence of the number of structures 

used to derive DrugScore2018 potentials on the shape and error of the potential is 

shown exemplary for N.4-C.ar (C) and I-O.2 (D) interactions.  
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Figure 3. (A) Convergence of the distance-dependent DrugScore2018 pair potentials with 

respect to the number of complexes in the training set. The mean PD of the pair 

potentials with corresponding error bars representing the standard error of the 

mean (SEM) was derived from bootstrapping experiments using six subsets of 

the training set. (B) Distribution of mean PD values obtained for the 

bootstrapping of the complete data set. 
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Figure 4. Comparison between predicted binding affinities using DrugScore (A), DrugScoreCSD 

(B), and DrugScore2018 (C) and those from experiments for the CASF-2013 dataset. 

pKi, calc. values were obtained by linear regression of DrugScore values to experimental 

data. For DrugScore2018, values of 3.0 for the intercept and -1.4*10-2 for the slope were 

found (in the case of a fixed intercept of 0, the slope (scaling coefficient) is -2.5*10-2). 

These slope values are close to the one found previously for DrugScore.50 The dashed 

lines indicate the residual range (± standard deviation ો) of the regression line. The 

Pearson correlation coefficient (R), the Spearman rank correlation (Rs), and p are given 

in the insets. 
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Figure 5. Bar plots of the results of the Ranking Power test (A) and Docking Power test (B) 

for the CASF-2013 dataset. The success rate of the Ranking Power test is defined 

by the SF’s ability to score either all known binders in the correct order with respect 

to their known binding affinities (“High Level”, blue), or to identify the best binder 

(“Low Level”, red). The success rate of the Docking Power test is defined by the 

ability to best score a docking solution compared to the crystal ligand. The results 

are divided into three categories: A solution with RMSD ≤2 Å to the crystal ligand 

is ranked best (“Top1”, blue), is within the first two ranked solutions (“Top2”, 
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yellow), or within the first three ranked solutions (“Top3”, red). Except for the 

DrugScore variants, values were taken from ref. 45. 
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Figure 6. (A) Cumulative frequency of RMSD values of the best ranked docking pose against 

the crystal pose using either the ligand conformation of the crystal structure (dot 

marker, solid line) or a low-energy conformer(diamond marker, dashed line) as 

input. 4,056 protein-ligand complexes taken from the PDBbind Refined Set were 

used for docking. The vertical dotted line indicates an RMSD of 2.0 Å, which is 

considered a “good” docking solution. The inlay figures show the relative and 

cumulative frequency of the number of clusters of generated docking solutions in 

the docking runs. (B) Examples of docking convergence, comparing the built-in SF 

of AutoDock3, DrugScore, and DrugScore2018 (from left to right), for the protein-

ligand complex PDB ID 3up2. The initial conformation of the crystal ligand is 

shown in green and the docking solutions in yellow (AD3), blue (DrugScore), and 
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red (DrugScore2018), respectively. The chosen docking is exemplary for the 

enhanced prediction accuracy , as only DrugScore2018 predicts the orientation of the 

trifluoromethoxy group correctly.  
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10 Tables 

Table 1. Results of the CASF-2013 Scoring Power test, sorted by Spearman’s rank correlation. 

Scoring functiona 
# Scored 

complexes 
Rb RS

c SDd 

BT-Score74 e 195 0.825 n.a.e n.a. 
AutoDockHybrid67 195 0.635 0.638 1.76 

DrugScore2018 195 0.601 0.629 1.79 

X-ScoreHM 195 0.614 0.626 1.78 

ΔSAS 195 0.606 0.624 1.79 

ChemPLP@GOLD 195 0.579 0.614 1.84 

DSX 195 0.584 0.610 1.82 

ChemScore@SYBYL 195 0.592 0.610 1.82 

DrugScore 195 0.580 0.606 1.83 

DrugScoreCSD 195 0.572 0.599 1.84 

SMoG201643 e 195 0.570 n.a.e 1.68 

PLP1@DiscoveryStudio 195 0.568 0.586 1.86 

ASP@GOLD 195 0.556 0.578 1.88 

PLP2@DiscoveryStudio 195 0.558 0.571 1.87 

GScore@SYBYL 195 0.558 0.557 1.87 

DScore@SYBYL 195 0.526 0.556 1.92 

ChemScore@GOLD 189 0.536 0.544 1.90 

Alpha-HB@MOE 195 0.511 0.526 1.94 

ASE@MOE 195 0.544 0.522 1.89 

GoldScore@GOLD 189 0.483 0.498 1.97 

LUDI2@DiscoveryStudio 195 0.451 0.494 2.01 

LigScore2@DiscoveryStudio 190 0.456 0.493 2.02 

Affinity-dG@MOE 195 0.482 0.489 1.98 

LUDI3@DiscoveryStudio 195 0.487 0.488 1.97 

LUDI1@DiscoveryStudio 195 0.444 0.474 2.02 

Jain@DiscoveryStudio 191 0.408 0.445 2.05 

GlideScore-SP 169 0.452 0.402 2.03 

PMF@DiscoveryStudio 194 0.364 0.364 2.11 

PMF@SYBYL 191 0.221 0.364 2.20 

LigScore1@DiscoveryStudio 192 0.348 0.345 2.13 

GlideScore-XP 164 0.277 0.308 2.18 

London-dG@MOE 195 0.242 0.277 2.19 
PMF04@DiscoveryStudio 188 0.200 0.244 2.22 

[a] All data was taken from ref. 45 except for BT-Score74, AutoDockHybrid67, SMoG201643, and the three 
DrugScore variants. 
[b] Pearson correlation coefficient. 
[c] Spearman correlation coefficient. 
[d] Standard deviation of predicted pKi values; in log units. 
[e] Data not available. 
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Table 2. Results of the CASF-2013 Screening Power test. 

Scoring functiona 
Enrichment Factor (EF)b 

Top 1% Top 5% Top 10% 

GlideScore-SP 19.54 6.27 4.14 
ChemScore@GOLD 18.9 6.83 4.08 

GlideScore-XP 16.81 6.02 4.07 

LigScore2@DiscoveryStudio 15.9 6.23 3.51 

ChemPLP@GOLD 14.28 5.88 4.31 

DrugScoreCSD 12.69 4.86 3.34 

LUDI1@DiscoveryStudio 12.53 4.28 2.8 

ASP@GOLD 12.36 6.23 3.79 

DSX 8.46 4.05 2.88 

Affinity-dG@MOE 8.21 4.15 3.19 

London-dG@MOE 8.08 3.36 2.51 

GoldScore@GOLD 7.95 4.52 3.16 

PLP1@DiscoveryStudio 6.92 4.28 3.04 

DrugScore2018 6.92 3.44 2.57 

Jain@DiscoveryStudio 5.9 2.51 1.8 

PMF@SYBYL 5.38 2.21 1.9 

ChemScore@SYBYL 5.26 2.38 2.18 

Alpha-HB@MOE 4.87 3.23 1.32 

PMF04@DiscoveryStudio 4.87 2.87 2.63 

ASE@MOE 4.36 2.35 1.59 

DrugScore 4.36 1.82 2.03 

X-ScoreHM 2.31 2.14 1.41 

D-Score@SYBYL 2.31 1.79 1.46 

G-Score@SYBYL 1.92 1.26 1.44 
ΔSAS 1.41 1.28 1.12 

[a] All data was taken from ref. 45 except for the three DrugScore variants. 
[b] The results are divided into three categories: the enrichment factor (EF) is calculated for the top 1%, 5% 
and 10% of the data set. 


