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Voigtländera,b,∗∗

aPeter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract

The Te-covered Si(111) surface has received recent interest as a template for the epitaxy of van der Waals
(vdW) materials, e.g. Bi2Te3. Here, we report the formation of a Te buffer layer on Si(111)–(7×7) by
low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While deposition of
several monolayer (ML) of Te on the Si(111)–(7×7) surface at room temperature results in an amorphous
Te layer, increasing the substrate temperature to 770K results in a weak (7×7) electron diffraction pattern.
Scanning tunneling microscopy of this surface shows remaining corner holes from the Si(111)–(7×7) surface
reconstruction and clusters in the faulted and unfaulted halves of the (7×7) unit cells. Increasing the
substrate temperature further to 920K leads to a Te/Si(111)–(2

√
3× 2

√
3)R30◦ surface reconstruction. We

find that this surface configuration has an atomically flat structure with threefold symmetry.
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1. Introduction

In recent years, layered vdW materials such as ZnTe, FeTe and topological insulators Bi2Te3, Sb2Te3 as
well as ternary and quaternary compounds thereof have received increasing interest. Their unique electronic
properties and topologically non-trivial phases make them promising candidates for an application in future
electronic devices [1–6]. In this context, passivated semiconductor surfaces have gained importance as
substrates for the growth of the layered materials by vdW epitaxy [7]. In this growth-mode, an initial
passivation of the substrate surface is required to grow high-quality films, ideally by one of the chemical
elements of the subsequently grown films. The purpose of the buffer layer is to saturate any dangling bonds
of the substrate and to form an atomically flat template for the film growth. Furthermore, the buffer layer
needs to be insulating to not result in parallel conduction channels which undermine the applicability of the
on top grown films in devices [7]. Due to the typically hexagonal crystal structure of the tellurium-based
vdW materials, Si(111) has emerged as one of the most frequently used substrates. While tellurium is
known to saturate dangling bonds of Si(100) surfaces, as used for instance in surfactant-mediated growth of
germanium [8], there is only a very limited amount of studies on the Te growth on Si(111) surfaces [9, 10],
all in the sub-monolayer coverage regime. In the present study, we report the growth of Te on Si(111)–(7×7)
by a combined low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) study.
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