001     858312
005     20240711114023.0
024 7 _ |a 10.1016/j.jnucmat.2018.09.032
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000450122300004
|2 WOS
037 _ _ |a FZJ-2018-07200
082 _ _ |a 620
100 1 _ |a Založnik, Anže
|0 0000-0002-3488-7370
|b 0
|e Corresponding author
245 _ _ |a The influence of helium on deuterium retention in beryllium co-deposits
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544432879_9818
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tritium co-deposition with materials from the plasma-facing components is expected to be the main contributor to tritium retention in ITER. Since He will also be present in the plasma as fusion ash during the DT campaign, this study focuses on the effect of He on D retention in Be co-deposits. The PISCES-B linear plasma device was used to create co-deposited Be-D-He layers for various deposition temperatures (295 K - 475 K) and He concentrations in plasma mixtures (). Thermal desorption spectroscopy and nuclear reaction analysis were used to determine the D concentration in co-deposits. For the lowest He concentration (1%) an increase of D retention was observed for the deposition at room temperature, whereas for higher He concentrations a declining trend of D retention was found. Including 10% of He in the plasma is found to reduce D retention at deposition temperatures below 425 K and have a negligible effect at higher deposition temperatures.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baldwin, Matthew J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Doerner, Russell P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwarz-Selinger, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 4
773 _ _ |a 10.1016/j.jnucmat.2018.09.032
|g Vol. 512, p. 25 - 30
|0 PERI:(DE-600)2001279-2
|p 25 - 30
|t Journal of nuclear materials
|v 512
|y 2018
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/858312/files/1-s2.0-S0022311518307426-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858312/files/1-s2.0-S0022311518307426-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858312
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21