000858314 001__ 858314
000858314 005__ 20240712084610.0
000858314 0247_ $$2doi$$a10.1016/j.nme.2018.11.004
000858314 0247_ $$2Handle$$a2128/20364
000858314 0247_ $$2WOS$$aWOS:000454165000033
000858314 037__ $$aFZJ-2018-07202
000858314 082__ $$a624
000858314 1001_ $$0P:(DE-Juel1)145890$$aWauters, Tom$$b0$$eCorresponding author$$ufzj
000858314 245__ $$aWall conditioning throughout the first carbon divertor campaign on Wendelstein 7-X
000858314 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000858314 3367_ $$2DRIVER$$aarticle
000858314 3367_ $$2DataCite$$aOutput Types/Journal article
000858314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544433156_9818
000858314 3367_ $$2BibTeX$$aARTICLE
000858314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858314 3367_ $$00$$2EndNote$$aJournal Article
000858314 520__ $$aControlling the recycling of hydrogen and the release of impurities from the plasma facing components proved to be essential and challenging throughout the first divertor campaign on W7-X. This paper discusses the conditioning requirements throughout the first divertor campaign on Wendelstein 7-X. Baking at 150°C and glow discharge conditioning (GDC) in H2 is performed after the initial pump down of the vacuum vessel. Experimental programs in hydrogen are interlaced with He discharges to desaturate the wall from hydrogen, recover good recycling conditions and hence establish plasma density control. Optimized He ECRH wall conditioning procedures consisted of sequences of short discharges with fixed duty cycle. He-GDC remained however needed before each experimental day to fully offset the hydrogen inventory build-up. A significant increase in the divertor temperature is observed throughout an operational day, enhancing outgassing of CO and H2O. Preliminary recombination-diffusion modelling of hydrogen outgassing suggests enhanced diffusion to deeper surface layers with increasing wall temperature, which results in better wall pumping. This indicates that the experienced plasma performance degradation throughout an operational day results from increased impurity outgassing at higher wall temperature rather than hydrogen saturation of the wall.
000858314 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000858314 588__ $$aDataset connected to CrossRef
000858314 7001_ $$0P:(DE-Juel1)171567$$aGoriaev, Andrei$$b1$$ufzj
000858314 7001_ $$0P:(DE-HGF)0$$aAlonso, Arturo$$b2
000858314 7001_ $$0P:(DE-HGF)0$$aBaldzuhn, Juergen$$b3
000858314 7001_ $$0P:(DE-HGF)0$$aBrakel, Rudolf$$b4
000858314 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b5
000858314 7001_ $$0P:(DE-HGF)0$$aDinklage, Andreas$$b6
000858314 7001_ $$0P:(DE-HGF)0$$aGrote, Heinz$$b7
000858314 7001_ $$0P:(DE-HGF)0$$aFellinger, Joris$$b8
000858314 7001_ $$0P:(DE-HGF)0$$aFord, Oliver P.$$b9
000858314 7001_ $$0P:(DE-Juel1)130373$$aKönig, Ralf$$b10$$ufzj
000858314 7001_ $$0P:(DE-HGF)0$$aLaqua, Heinrich$$b11
000858314 7001_ $$0P:(DE-Juel1)8998$$aMatveev, Dmitry$$b12$$ufzj
000858314 7001_ $$0P:(DE-HGF)0$$aStange, Torsten$$b13
000858314 7001_ $$00000-0001-7883-6471$$aVanó, Lilla$$b14
000858314 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.11.004$$gVol. 17, p. 235 - 241$$p235 - 241$$tNuclear materials and energy$$v17$$x2352-1791$$y2018
000858314 8564_ $$uhttps://juser.fz-juelich.de/record/858314/files/1-s2.0-S2352179118300966-main.pdf$$yOpenAccess
000858314 8564_ $$uhttps://juser.fz-juelich.de/record/858314/files/1-s2.0-S2352179118300966-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858314 909CO $$ooai:juser.fz-juelich.de:858314$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145890$$aForschungszentrum Jülich$$b0$$kFZJ
000858314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171567$$aForschungszentrum Jülich$$b1$$kFZJ
000858314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000858314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130373$$aForschungszentrum Jülich$$b10$$kFZJ
000858314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8998$$aForschungszentrum Jülich$$b12$$kFZJ
000858314 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000858314 9141_ $$y2018
000858314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858314 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000858314 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858314 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000858314 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000858314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858314 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000858314 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x1
000858314 9801_ $$aFullTexts
000858314 980__ $$ajournal
000858314 980__ $$aVDB
000858314 980__ $$aUNRESTRICTED
000858314 980__ $$aI:(DE-Juel1)IEK-4-20101013
000858314 980__ $$aI:(DE-Juel1)IEK-6-20101013
000858314 981__ $$aI:(DE-Juel1)IFN-1-20101013
000858314 981__ $$aI:(DE-Juel1)IFN-2-20101013
000858314 981__ $$aI:(DE-Juel1)IFN-2-20101013