001     858314
005     20240712084610.0
024 7 _ |a 10.1016/j.nme.2018.11.004
|2 doi
024 7 _ |a 2128/20364
|2 Handle
024 7 _ |a WOS:000454165000033
|2 WOS
037 _ _ |a FZJ-2018-07202
082 _ _ |a 624
100 1 _ |a Wauters, Tom
|0 P:(DE-Juel1)145890
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Wall conditioning throughout the first carbon divertor campaign on Wendelstein 7-X
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544433156_9818
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Controlling the recycling of hydrogen and the release of impurities from the plasma facing components proved to be essential and challenging throughout the first divertor campaign on W7-X. This paper discusses the conditioning requirements throughout the first divertor campaign on Wendelstein 7-X. Baking at 150°C and glow discharge conditioning (GDC) in H2 is performed after the initial pump down of the vacuum vessel. Experimental programs in hydrogen are interlaced with He discharges to desaturate the wall from hydrogen, recover good recycling conditions and hence establish plasma density control. Optimized He ECRH wall conditioning procedures consisted of sequences of short discharges with fixed duty cycle. He-GDC remained however needed before each experimental day to fully offset the hydrogen inventory build-up. A significant increase in the divertor temperature is observed throughout an operational day, enhancing outgassing of CO and H2O. Preliminary recombination-diffusion modelling of hydrogen outgassing suggests enhanced diffusion to deeper surface layers with increasing wall temperature, which results in better wall pumping. This indicates that the experienced plasma performance degradation throughout an operational day results from increased impurity outgassing at higher wall temperature rather than hydrogen saturation of the wall.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Goriaev, Andrei
|0 P:(DE-Juel1)171567
|b 1
|u fzj
700 1 _ |a Alonso, Arturo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baldzuhn, Juergen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brakel, Rudolf
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 5
700 1 _ |a Dinklage, Andreas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grote, Heinz
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fellinger, Joris
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ford, Oliver P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a König, Ralf
|0 P:(DE-Juel1)130373
|b 10
|u fzj
700 1 _ |a Laqua, Heinrich
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Matveev, Dmitry
|0 P:(DE-Juel1)8998
|b 12
|u fzj
700 1 _ |a Stange, Torsten
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vanó, Lilla
|0 0000-0001-7883-6471
|b 14
773 _ _ |a 10.1016/j.nme.2018.11.004
|g Vol. 17, p. 235 - 241
|0 PERI:(DE-600)2808888-8
|p 235 - 241
|t Nuclear materials and energy
|v 17
|y 2018
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/858314/files/1-s2.0-S2352179118300966-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/858314/files/1-s2.0-S2352179118300966-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:858314
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145890
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)8998
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21