000858323 001__ 858323
000858323 005__ 20240712100950.0
000858323 0247_ $$2doi$$a10.5194/acp-2018-959
000858323 0247_ $$2ISSN$$a1680-7367
000858323 0247_ $$2ISSN$$a1680-7375
000858323 0247_ $$2ISSN$$a=
000858323 0247_ $$2ISSN$$aAtmospheric
000858323 0247_ $$2ISSN$$achemistry
000858323 0247_ $$2ISSN$$aand
000858323 0247_ $$2ISSN$$aphysics
000858323 0247_ $$2ISSN$$adiscussion
000858323 0247_ $$2Handle$$a2128/20371
000858323 0247_ $$2altmetric$$aaltmetric:49126215
000858323 037__ $$aFZJ-2018-07211
000858323 082__ $$a550
000858323 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0$$eCorresponding author
000858323 245__ $$aAtmospheric oxidation capacity in Chinese megacities during photochemical polluted season: radical budget and secondary pollutants formation
000858323 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000858323 3367_ $$2DRIVER$$aarticle
000858323 3367_ $$2DataCite$$aOutput Types/Journal article
000858323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544450703_18136
000858323 3367_ $$2BibTeX$$aARTICLE
000858323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858323 3367_ $$00$$2EndNote$$aJournal Article
000858323 520__ $$aAtmospheric oxidation capacity is the core of converting fresh-emitted substances to secondary pollutants. In this study, we present the in-situ measurements at four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chongqing) in China during photochemical polluted seasons. The atmospheric oxidation capacity is evaluated using an observational-based model with the input of radical chemistry precursor measurements. The radical budget analysis illustrates the importance of HONO and HCHO photolysis, which contribute nearly half of the total radical primary sources. The radical propagation is efficient due to abundant of NO in the urban environments. Hence, the production rate of secondary pollutants, i.e. ozone and fine particle precursors (H2SO4, HNO3, and ELVOCs) is fast resulting in secondary air pollution. The ozone budget demonstrates that strong ozone production occurs in the urban area which results in fast ozone concentration increase locally and further transported to downwind areas. On the other hand, the O3-NOx-VOC sensitivity tests show that ozone production is VOC-limited, among which alkenes and aromatics should be first mitigated for ozone pollution control in the presented four megacities. However, NOx emission control will lead to more server ozone pollution due to the drawback-effect of NOx reduction. For fine particle pollution, the role of HNO3−NO3− partitioning system is investigated with a thermal dynamic model (ISORROPIA2) due to the importance of particulate nitrate during photochemical polluted seasons. The strong nitrate acid production converts efficiently to nitrate particles due to high RH and ammonium-rich conditions during photochemical polluted seasons. This study highlights the efficient radical chemistry maintains the atmospheric oxidation capacity in Chinese megacities, which results in secondary pollutions characterized by ozone and fine particles.
000858323 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000858323 588__ $$aDataset connected to CrossRef
000858323 7001_ $$00000-0001-9425-9520$$aLu, Keding$$b1
000858323 7001_ $$0P:(DE-HGF)0$$aJiang, Meiqing$$b2
000858323 7001_ $$0P:(DE-HGF)0$$aSu, Rong$$b3
000858323 7001_ $$0P:(DE-HGF)0$$aWang, Hongli$$b4
000858323 7001_ $$0P:(DE-HGF)0$$aLou, Shengrong$$b5
000858323 7001_ $$0P:(DE-HGF)0$$aFu, Qingyan$$b6
000858323 7001_ $$0P:(DE-HGF)0$$aZhai, Chongzhi$$b7
000858323 7001_ $$0P:(DE-HGF)0$$aTan, Qinwen$$b8
000858323 7001_ $$0P:(DE-HGF)0$$aYue, Dingli$$b9
000858323 7001_ $$0P:(DE-HGF)0$$aChen, Duohong$$b10
000858323 7001_ $$0P:(DE-HGF)0$$aWang, Zhanshan$$b11
000858323 7001_ $$0P:(DE-HGF)0$$aXie, Shaodong$$b12
000858323 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b13
000858323 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b14
000858323 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2018-959$$gp. 1 - 23$$p1 - 23$$tAtmospheric chemistry and physics / Discussions Discussions [...]$$v959$$x1680-7375$$y2018
000858323 8564_ $$uhttps://juser.fz-juelich.de/record/858323/files/acp-2018-959.pdf$$yOpenAccess
000858323 8564_ $$uhttps://juser.fz-juelich.de/record/858323/files/acp-2018-959.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858323 909CO $$ooai:juser.fz-juelich.de:858323$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000858323 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000858323 9141_ $$y2018
000858323 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858323 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858323 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858323 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000858323 9801_ $$aFullTexts
000858323 980__ $$ajournal
000858323 980__ $$aVDB
000858323 980__ $$aUNRESTRICTED
000858323 980__ $$aI:(DE-Juel1)IEK-8-20101013
000858323 981__ $$aI:(DE-Juel1)ICE-3-20101013