1 Title page

- 2 Names of the authors: Syed M. Qaim*, Bernhard Scholten, Bernd Neumaier
- 3 Title: New developments in the production of theranostic pairs of radionuclides
- 4 Affiliation and address of the authors: Institut für Neurowissenschaften und Medizin,
- 5 INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
- 6 E-mail address of the corresponding author: s.m.qaim@fz-juelich.de

New developments in the production of theranostic pairs of radionuclides

10 Syed M. Qaim*, Bernhard Scholten, Bernd Neumaier

11 Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie,

Forschungszentrum Jülich, D-52425 Jülich, Germany

Abstract

8

9

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A brief historical background of the development of the theranostic approach in nuclear medicine is given and seven theranostic pairs of radionuclides, namely 44gSc/47Sc, ⁶⁴Cu/⁶⁷Cu, ⁸³Sr/⁹⁰Sr, ⁸⁶Y/⁹⁰Y, ¹²⁴I/¹³¹I, ¹⁵²Tb/¹⁶¹Tb and ¹⁵²Tb/¹⁴⁹Tb, are considered. The first six pairs consist of a positron and a β --emitter whereas the seventh pair consists of a positron and an α -particle emitter. The decay properties of all those radionuclides are briefly mentioned and their production methodologies are discussed. The positron emitters ⁶⁴Cu, ⁸⁶Y and ¹²⁴I are commonly produced in sufficient quantities via the (p,n) reaction on the respective highly enriched target isotope. A clinical scale production of the positron emitter ^{44g}Sc has been achieved via the generator route as well as via the (p,n) reaction, but further development work is necessary. The positron emitters ⁸³Sr and ¹⁵²Tb are under development. Among the therapeutic radionuclides, ⁸⁹Sr, ⁹⁰Y and ¹³¹I are commercially available and ¹⁶¹Tb can also be produced in sufficient quantity at a nuclear reactor. Great efforts are presently underway to produce ⁴⁷Sc and ⁶⁷Cu via neutron, photon and charged particle induced reactions. The radionuclide ¹⁴⁹Tb is unique because it is an α-particle emitter. The present method of production of ¹⁵²Tb and ¹⁴⁹Tb involves the use of the spallation process in combination with an on-line mass separator. The role of some emerging irradiation facilities in the production of special radionuclides is discussed.

Keywords

- 32 Theranostic pair of radionuclides. Decay data. Cross section and excitation function.
- 33 Production methodology. Yield and purity. Specific activity.

1. Introduction

35 Radioactivity is unique in the sense that it can be routinely used in nuclear medicine both 36 for diagnosis and therapy [1]. Each application, however, demands a special type of 37 radionuclide, the choice being dependent on its decay properties. Thus, γ-ray emitters like 99 mTc ($T_{\frac{1}{2}} = 6.0 \text{ h}$), 123 I ($T_{\frac{1}{2}} = 13.2 \text{ h}$) and 201 Tl ($T_{\frac{1}{2}} = 3.06 \text{ d}$), and positron emitters, like 38 11 C ($T_{\frac{1}{2}} = 20.4$ min), 18 F ($T_{\frac{1}{2}} = 109.6$ min) and 68 Ga ($T_{\frac{1}{2}} = 1.13$ h) are commonly used in 39 40 diagnostic studies utilizing Single Photon Emission Computed Tomography (SPECT) or 41 Positron Emission Tomography (PET), respectively. As regards internal radionuclide 42 therapy (endoradiotherapy), in general, radionuclides emitting low-range highly ionizing 43 radiation, i.e., α - or β -particles, conversion and/or Auger electrons, are of great interest. 44 The major problem in internal radiotherapy, however, has been the quantification of 45 radiation dose caused to various organs, mainly due to uncertainties in the measurement of radioactivity from outside the body of the patient. Although in the case of a few therapeutic 46 radionuclides, e. g., 131 I ($T_{1/2} = 8.02$ d) and 188 Re ($T_{1/2} = 17.0$ h), γ -scanning or SPECT has 47 48 been used to determine the radioactivity distribution in the body, the methodology lacks 49 precision. The uncertainty in radioactivity distribution is still higher for radionuclides decaying by pure β^- -emission, e.g., ${}^{32}P$ ($T_{1/2} = 14.3$ d), ${}^{89}Sr$ ($T_{1/2} = 50.5$ d) and ${}^{90}Y$ ($T_{1/2} = 2.7$ 50 51 d), because imaging is usually done through the use of bremsstrahlung.

52

53

54

55

56

57

58

59

60

34

In the early 1990s, thoughts started developing in several laboratories to use a SPECT radionuclide as a surrogate of a therapeutic radionuclide [2], e.g., 111 In ($T_{\frac{1}{2}}$ = 2.8 d), a trivalent metal, as a surrogate of 90 Y, another trivalent metal. There has also been discussion about the use of several other metallic radionuclides [3]. However, none of those approaches provided patient-individual quantitative data on radiation doses. In 1992, a few researchers at the Forschungszentrum Jülich, Germany, came to the idea of combining PET and endoradiotherapy by using a pair of radionuclides of the same element, one emitting positrons and the other β^- -particles. The choice fell on the pair 86 Y/ 90 Y. To this end, the

 β^+ -emitting radionuclide ⁸⁶Y ($T_{\frac{1}{2}} = 14.7$ h) was developed and produced in sufficient quantity [4, 5] and it was applied together with the β^- -emitting radionuclide ⁹⁰Y ($T_{\frac{1}{2}} = 2.7$ d) in a tumour patient study [6]. That investigation is regarded today as the beginning of the theranostic concept. The development of this concept has been recently described in detail [7].

By administering to a specific patient a positron-emitting radioisotope of an element together with a therapeutic radioisotope of the same element (which emits β^- - or α -particles, or low-energy Auger/conversion electrons), it is possible to measure the uptake kinetics in an organ of the patient via PET imaging, thereby allowing an accurate dosimetric calculation, which leads to quantification of therapy. This concept is now called "theranostic approach" and it is finding increasing application. The methodology of using "matched-pair" of radionuclides in patient care studies is known as "personalized medicine".

There are several suitable or potentially suitable theranostic pairs of radionuclides, e. g. $^{44g}Sc/^{47}Sc$; $^{64}Cu/^{67}Cu$; $^{68}Ga/^{67}Ga$, $^{72}As/^{77}As$; $^{83}Sr/^{89}Sr$; $^{86}Y/^{90}Y$; $^{110g}In/^{111}In$; $^{124}I/^{131}I$; $^{152}Tb/^{161}Tb$ and $^{152}Tb/^{149}Tb$. Some of them have already found application in clinical research while the others are being developed. In recent years there is also an increasing tendency to handle only one radionuclide as a theranostic agent, especially if it is readily available. One example is ^{177g}Lu . The dosimetry is based on γ -ray spectrometry or SPECT and the therapy effect is well known. However, in comparison to the PET technique, SPECT is not quantitative, though in recent years high-quality SPECT systems have been developed.

In this review we discuss seven rather established pairs of radionuclides where a combination of PET and internal radiotherapy is involved. Their production methods are described and the prospects of their availability on a clinical scale are considered.

2. Choice of radionuclides: decay data

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

The decay properties of the seven pairs of radionuclides under consideration in this review are given in **Table 1**. The major decay data were taken from refs. [8-10] and they represent the commonly accepted values. Only in a few individual cases, e.g., ⁶⁴Cu and ¹²⁴I, own recently measured data [11] are given. The positron emission intensities for ⁸³Sr, ⁸⁶Y and ¹⁵²Tb are rather uncertain.

The positron endpoint energy and the associated γ -rays play important roles in PET measurements. Whereas a high positron endpoint energy affects the resolution of a scan, the γ -rays present in the vicinity of the annihilation radiation may altogether distort the image. From this point of view the positron emitter ⁸⁶Y is far from ideal, but it could be used after many scattering corrections [12, 13]. There is some problem with ¹²⁴I as well, but the corrections needed are much smaller [12-14]. Somewhat similar result was obtained with ^{44g}Sc [15]. The positron emitter ⁶⁴Cu is almost ideal for PET imaging because of its low positron endpoint energy and almost no emitted y-ray, the abundance of the 1346 keV γ-ray being negligibly low. It has been therefore extensively used in PET studies related to radioimmunotherapy. As far as the other two β⁺-emitters are concerned (i.e. ⁸³Sr and ¹⁵²Tb), very few PET measurements have been reported. The radionuclide ⁸³Sr appears to be promising because its positron endpoint energy is comparable to that of ^{44g}Sc. The radionuclide ¹⁵²Tb has somewhat higher positron endpoint energy but since the associated γ -rays are not too many, it has been used in PET measurements after applying scattering corrections similar to those in the case of ¹²⁴I. As regards therapeutic radionuclides, ⁸⁹Sr and 90 Y are pure β^- -emitters. The radionuclide 149 Tb is an exotic α -emitter. The radionuclides ⁴⁷Sc, ⁶⁷Cu, ¹³¹I and ¹⁶¹Tb emit β⁻-particles with relatively low endpoint energies and a few associated y-rays.

3. Production methodologies

The development of production methodology of a novel radionuclide involves work in several directions, e.g., nuclear data, irradiation technology, chemical separation and quality control of the product. We consider several of those aspects below for each individual radionuclide. For a few radionuclides, some production details were recently

Table 1. Major decay data^{a)} of the theranostic pairs of radionuclides

β^+ -emitting radionuclide						Therapeutic radionuclide					
Radio- nuclide	T ½	Mode of decay	E _β ⁺ (max) (keV)	Main γ-rays		Radio- nuclide	T _{1/2}	Mode of decay	Corpuscular radiation	Main γ-rays	
				Energy (keV)	Intensity (%)			(%)	E _{max} (keV)	Energy (keV)	Intensity (%)
⁴⁴ Sc	3.9 h	EC (5.7) β ⁺ (94.3)	1470	1157.0	99.9	⁴⁷ Sc	3.35 d	β (100)	610	159.4	68
⁶⁴ Cu ^{b)}	12.7 h	EC (43.8) β ⁺ (17.8) β (38.4)	653 571	1346.0	0.53	⁶⁷ Cu	2.58 d	β (100)	577	184.6	48.6
⁸³ Sr	32.4 h	EC (74) β ⁺ (26)	1274	762.7 381.6	30.0 19.6	⁸⁹ Sr	50.5 d	β (100)	1470		
⁸⁶ Y	14.7 h	EC (67) β ⁺ (33)	2335	627.8 1076.7 1153.2	32.6 82.5 30.5	90Yc)	2.7 d	β (100)	2290		
¹²⁴ I ^{b)}	4.18 d	EC (78) β ⁺ (22)	2137	602.7 722.8	61 10	¹³¹ I	8.02 d	β (100)	607	364.5 637.0	82 7.3
¹⁵² Tb	17.5 h	EC (82) β ⁺ (18)	2500	344.3	57	¹⁶¹ Tb ¹⁴⁹ Tb	6.9 d 4.1 h	β (100) α (16.7) β+ (4.3)	590 α: 5830 600	74.6 165.0	9.8 27.8
								EC (79)	000	352.2	33.0

<sup>a) Data taken from Refs. [8-10], unless otherwise stated.
b) Decay data based partly on own measurement [11].
c) Obtained generally from a generator system.</sup>

- reported [16, 17]. For those radionuclides, therefore, the present review gives only some
- 123 updated information.

3.1 Theranostic pair ^{44g}Sc/⁴⁷Sc

- 125 The trivalent element scandium forms very useful metal complexes with many oxygen-
- 126 containing bifunctional chelators. This pair of radionuclides is therefore of great potential
- value in theranostic investigations. Although the positron emitter 43 Sc ($T_{1/2} = 3.9$ h) is also
- very interesting and is presently attracting considerable attention, we limit our discussion
- to ^{44g}Sc because it has been more thoroughly investigated.

130

131

124

Production of ^{44g}Sc

- For the production of the positron emitter ^{44g}Sc in no-carrier-added form, two routes have
- been investigated:
- 134 a) 45 Sc(p,2n) 44 Ti (60.4 a) $\stackrel{EC}{\rightarrow}$ 44g Sc generator system
- b) Direct production of ^{44g}Sc.

136

- 137 The first route involves the production of the long-lived parent ⁴⁴Ti at an intermediate
- energy accelerator. The cross sections of the 45 Sc(p,2n) 44 Ti nuclear reaction have been well
- investigated [18, 19] and the energy range $E_p=35 \rightarrow 15$ MeV appears to be very suitable
- 140 for production purposes. The calculated thick target yield of ⁴⁴Ti over this energy range
- amounts to ~ 4 kBq μ A⁻¹ h⁻¹ (for 1 h irradiation). Due to the long half-life of ⁴⁴Ti, its
- production is a rather difficult proposition. Although it was proposed a long time ago [20],
- 143 hitherto only a 185 MBq generator has been reported [21] and some post-elution
- purification of ^{44g}Sc has been described [22]. In recent years, more effort has been devoted
- 145 to the separation of the parent ⁴⁴Ti via anion-exchange chromatography [23] and the
- daughter ^{44g}Sc through cation-exchange chromatography [24]. The generator activity,
- however, has still been limited to about 175 MBq. The separated 44g Sc is free of 44m Sc ($T_{\frac{1}{2}}$
- 148 = 2.44 d).

The second route of production of ^{44g}Sc entails the utilization of either the $^{44}Ca(p,n)^{44g}Sc$ or the $^{44}Ca(d,2n)^{44g}Sc$ reaction. The excitation functions of those reactions have been measured [25-30]. A third reaction, namely $^{41}K(\alpha,n)^{44g}Sc$, is also possible. Its cross sections have also been measured [26, 31, 32]. The thick target yields of ^{44g}Sc calculated from the excitation functions are given in **Fig. 1**. The data for the (p,n) reaction were taken from refs. [25, 26, 28] whereby the Levkovskii data [26] were reduced by a factor of 0.82 [33]. The cross section data adopted for the (d,2n) reaction were from [30] and those for the (α ,n) reaction from refs. [26, 31, 32]. Evidently, the yield from the (p,n) reaction is higher than that from the (d,2n) reaction up to about 30 MeV; thereafter the (d,2n) reaction appears to give a higher yield. The yield from the (α ,n) process is much lower. In each case a highly enriched target is necessary to achieve clinically relevant yields of ^{44g}Sc .

Several groups measured cross sections of a large number of charged particle induced reactions in which ^{44g}Sc was formed as a subsidiary product. Furthermore, a few groups investigated the production of ^{44g}Sc (together with other Sc isotopes) using ^{nat}Ca as the target material [cf. 34, 35]. The formation of ^{44g}Sc as a side product was also investigated in studies primarily done on the formation of ^{43}Sc in α -particle induced reactions on ^{nat}K and $^{nat,44}Ca$ [36-38]. All those studies are helpful in optimizing the production of ^{44g}Sc .

For clinical scale production of ^{44g}Sc , targets consisting of ^{44}CaO (enrichment 95%) and $^{44}CaCO_3$ (enrichment > 99%) have been used [27, 30, 39, 40]. Irradiations were done with protons ($E_p = 11 \rightarrow 5$ MeV) [27, 40] or deuterons ($E_d = 16 \rightarrow 10$ MeV) [30, 41] at beam currents of up to 50 μ A and 2μ A, respectively. The separation of ^{44g}Sc and the recovery of the target material were achieved through ion-exchange chromatography. By using the (d,2n) reaction, a batch yield of about 50 MBq of ^{44g}Sc was achieved [41] but it could be increased by increasing the beam current. In the case of the (p,n) reaction, on the other hand, a batch yield of up to 2 GBq ^{44g}Sc has been reported [40]. The product is of high radiochemical purity and can be used immediately for preparing radiometal complexes. The only drawback of the direct method of production of ^{44g}Sc is the associated longer lived metastable state ^{44m}Sc ($T_{1/2} = 2.44$ d), amounting to < 1% and \sim 2.5% in the (p,n) and

(d,2n) reactions, respectively [30]. On the other hand, this drawback is positively used in some laboratories to prepare a so-called "in-vivo generator" [41]. The longer lived ^{44m}Sc decays 100% by isomeric transition to ^{44g}Sc which can be measured via PET. Since the spin of the ^{44m}Sc isomer is relatively high (6⁺) as compared to that of ^{44g}Sc (2⁺), it was predicted [42] that an α -particle induced reaction would lead to a higher yield of ^{44m}Sc. This has been experimentally observed in the ⁴²Ca(α ,d)^{44m,g}Sc process [38]. The ratio of ^{44m}Sc to ^{44g}Sc increased to about 11% at E $_{\alpha}$ = 29 MeV. On the other hand, the thick target yields of both ^{44m}Sc and ^{44g}Sc in the α -particle induced reaction [38] are much lower than those in the (p,n) and (d,2n) reactions discussed above.

In summary, both the direct and indirect methods of production of ^{44g}Sc are interesting, but further development work is needed. A new aspect with regard to the direct production is the development of a solution target for use at a medical cyclotron. By irradiating a solution of ^{nat}Ca(NO₃₎₂ with 13 MeV protons, ^{44g}Sc was produced in quantities up to 28 MBq, sufficient for local radiochemical and possibly animal studies [43].

Production of ⁴⁷Sc

The production methods for the β^- -emitting therapeutic radionuclide ${}^{47}\text{Sc}$ in no-carrier-added form have been under investigation for more than 40 years but in recent years, with the developing concept of theranostic application, the efforts have been intensified. Since in most cases Ti is used as a target material, a large number of radiochemical separation methods for no-carrier-added ${}^{47}\text{Sc}$ from products formed in the interaction of Ti with neutrons, photons and charged particles have been developed [cf. 44-54]. Good summaries of those methods have been given [49, 50]. Similarly, separation methods of ${}^{47}\text{Sc}$ from an irradiated Ca target have also been described [55-58].

A summary of the routes used to date for the production of 47 Sc is given in **Table 2**. An old but very successful method has been the 47 Ti(n,p) 47 Sc reaction [45-52, 59-61]. The cross section averaged for the fission neutron spectrum (σ_{FS}) amounts to 20 ± 2 mb [62]. By irradiating 200 mg of 94.5% enriched 47 TiO₂ target in a high flux nuclear reactor for

about 3.6 days it was possible to obtain a batch yield of 1.6 GBq of ⁴⁷Sc of high

Table 2. Routes for production of ⁴⁷Sc

Nuclear process	Target (enrichment)	Cross section or projectile energy	Production related work	Separation yield (%)	Purity (%)	Batch yield GBq [Ref.]	Other references
⁴⁷ Ti(n,p) ⁴⁷ Sc	natTiO ₂ ; ⁴⁷ TiO ₂ (94.5 %)	$\sigma_{FS}: 20 \pm 2 \; mb^*$	Irradiation in a high-flux reactor; chemical processing	> 97	> 99.5	1.6 [49]	[44-48, 50-52] [59]
⁴⁸ Ti(γ,p) ⁴⁷ Sc	⁴⁸ TiO ₂ (99.1 %) natTiO ₂	Photons: 60 MeV Photons: 40 MeV	Irradiation in photon field; chemical processing	> 90	> 95	11×10^{-3} [54] (for 100 mg target) 186×10^{-3} [54] (for 3 g target)	
	⁴⁸ TiO ₂ (96.2 %)	Photons: 40 MeV	Simulation; benchmarking				[63]
$\overset{46}{\sim} Ca(n,\gamma)^{47}Ca$ $\overset{\beta^{-}}{\rightarrow} {}^{47}Sc$	⁴⁶ Ca(NO ₃) ₂ (31.7 %)	$\begin{split} &\sigma_{th}: 0.7 \pm 0.2 \; b^{\dagger} \\ &I_{o}: 0.32 \pm 0.12 \; b^{\dagger} \end{split}$	Irradiation in a high-flux reactor; chemical processing	> 80	> 99	0.6 [58] (for 1 mg target)	[55, 57, 60]
48 Ca $(\gamma,n)^{47}$ Ca $\stackrel{\beta^-}{\rightarrow} ^{47}$ Sc	^{nat} Ca	Photons: 40 MeV	Simulation; benchmarking; yield measurement				[64, 65]
⁴⁸ Ti(p,2p) ⁴⁷ Sc	⁴⁸ TiO ₂ (98.5 %)	$48 < E_p < 150 \; MeV$	High-current proton irradiation; chemical processing	> 90	Not accept- able	< 1 [48]	[49, 60, 61]

^{*} Value from A. Calamand, IAEA Technical Report-156 (1974) 273; (σ_{FS} is fission neutron spectrum averaged cross section).

[†] Value from S.F. Mughabghab and D.I. Garber, BNL-325 (1973) 20-6; (σ_{th} is thermal cross section; I₀ is resonance integral).

radionuclidic and chemical purity [49]. Higher yields are possible, if thicker targets would be used. Other groups used ^{nat}TiO₂ as target material and the neutron flux was not very high, so the resulting yield of ⁴⁷Sc was lower.

Another old method is the ⁴⁸Ti(γ,p)⁴⁷Sc reaction using high-energy photons [53]. In recent years investigations on the formation of a few therapeutic radionuclides using highly powerful accelerators (which deliver high-intensity, high-energy photons) have been intensified. In a most recent work at the Argonne National Laboratory [54] a batch yield of 187 MBq of ⁴⁷Sc has been achieved by using photons generated by an electron beam of 40 MeV (incident on a convertor) at a maximum power of about 3 kW. Further studies to increase the yields are in progress in several laboratories [cf. 63].

A third method of 47 Sc production utilizes the decay of 47 Ca ($T_{12} = 4.54$ d). The nuclear process generally used is 46 Ca(n,γ) 47 Ca $\stackrel{\beta^-}{\to}$ 47 Sc [55, 57, 58, 60]. The method has two limitations: a) the abundance of 46 Ca in nat Ca is only 0.004%, so that an enriched target is absolutely necessary, which is very expensive, b) the cross section of the (n,γ) reaction is not high (see **Table 2**). Nonetheless, the methodology has been recently well developed by using a 31.7% enriched 46 Ca(NO_3)₂ target and irradiating it at the neutron high flux reactor in Grenoble. The 47 Sc activity was separated from calcium by column chromatography, similar to the method developed for the separation of 44 Sc from a 44 Ca target (see above). From a 1 mg 46 Ca target, a batch yield of 600 MBq of 47 Sc was obtained. A higher yield could be achieved by increasing the amount of the target material. Besides the neutron activation of 46 Ca, the production of 47 Ca is also being investigated via the 48 Ca(γ ,n) –route [64, 65], especially in view of the increasing potential of high power electron linear accelerators. Irradiations were done with photons obtained from a 40 MeV, 1 kW beam of electrons on a convertor, and the radioactivity of the product 47 Ca was assayed. Further simulation, benchmarking and separation studies are continuing.

The production of 47 Sc has been attempted using charged particles as well, particularly via intermediate energy protons on nat Ti using the accelerator BLIP at Brookhaven National Laboratory [48, 49, 61]. The 47 Sc yields determined over the energy region $48 < E_p < 150$

MeV were on the order of a few GBq. The level of other Sc isotopes, especially ⁴⁶Sc, however, was rather high. More recent studies in a few other laboratories are concentrating on optimization of the energy range for production of this radionuclide. Two other methods investigated for the production of ⁴⁷Sc at the research level consist of the reactions ⁴⁴Ca(α,p)⁴⁷Sc and ⁴⁸Ca(p,2n)⁴⁷Sc. In the former case, using a 97.0% enriched ⁴⁴CaCO₃ target [37] high-purity ⁴⁷Sc was obtained in low yield which was, however, sufficient for a preclinical study. In the latter case [66], only the (p,2n) reaction cross section was measured.

Thus, in summary, considerable effort is presently being devoted to obtain high-quality ⁴⁷Sc in quantities sufficient for medical applications. In particular the photon induced reactions are receiving great attention.

3.2 Theranostic pair ⁶⁴Cu/⁶⁷Cu

The element copper has a versatile co-ordination chemistry. In the no-carrier-added form copper radioisotopes are able to bind with biologically relevant small molecules as well as with some antibodies and proteins. It is thus very suitable for preparing metal-chelates for medical use [67, 68]. Two positron emitters of copper, namely 61 Cu ($T_{\frac{1}{2}}$ = 3.4 h) and 64 Cu ($T_{\frac{1}{2}}$ = 12.7 h), have been used in PET studies. For theranostic applications, however, the radionuclide 64 Cu appears to be more suitable because of its longer half-life. We therefore concentrated on this radionuclide.

Production of ⁶⁴Cu

Several routes have been investigated for the production of no-carrier-added 64 Cu. The oldest among them is the 64 Zn(n,p) 64 Cu reaction in a nuclear reactor (for a brief summary see [69–71]). The fission neutron spectrum averaged cross section (σ_{FS}) amounts to 31 \pm 2.3 mb [62] and sufficient quantities of 64 Cu could be produced in a medium to high-flux reactor. The purity of the product achieved, however, did not meet the stringent demands for medical applications. In recent years some further efforts have been made to produce better quality 64 Cu via the above reaction in a nuclear reactor [70, 71], in particular by using

99.4% enriched ⁶⁴ZnO as target material in a thermal neutron shielded sample holder and efficient separation methods for radiocopper [71]. Furthermore, accelerator produced neutrons have also been used, e. g. d(Be) break up neutrons [72] or 14 MeV neutrons [73]. In the latter two cases the (n,p) reaction cross section is higher. However, due to low neutron fluxes the yield of ⁶⁴Cu was low.

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

274

275

276

277

278

The emphasis regarding the production of ⁶⁴Cu got shifted over the last several years from a reactor to a cyclotron. Proton and deuteron induced reactions on several target isotopes, especially the reactions 64 Ni(p,n) 64 Cu, 64 Ni(d,2n) 64 Cu, 68 Zn(p, α n) 64 Cu, 66 Zn(p,2pn) 64 Cu, 64 Zn(d,2p) 64 Cu and 66 Zn(d, α) 64 Cu were investigated till 2009 over a wide energy range of up to 80 MeV using highly enriched target isotopes, with the aim of obtaining data for the production of ⁶⁴Cu. Based on a critical analysis of the published nuclear reaction cross section data, Aslam et al. [74] presented a comparison of the various production reactions of ⁶⁴Cu and came to the conclusion that the ⁶⁴Ni(p,n)⁶⁴Cu reaction over the energy range of $E_p = 12 \rightarrow 8$ MeV would be the best choice. The calculated thick target yield amounts to 304 MBq μ A⁻¹ h⁻¹ (for 1h irradiation) and no radionuclidic impurity occurs. In recent years some further measurements near the threshold of the ⁶⁴Ni(p,n)⁶⁴Cu reaction have been carried out [75] and the reaction 67 Zn(p, α) 64 Cu has also been studied [76]. Furthermore, in connection with the specific activity of ⁶⁴Cu, the formation of nonradioactive copper during the production of ⁶⁴Cu via proton and deuteron-induced reactions on enriched ⁶⁴Ni has also been considered [77]. The nuclear process ⁶⁴Ni(p,n)⁶⁴Cu, developed at the Forschungszentrum Jülich [78], has now become the standard procedure for the production of ⁶⁴Cu. The major features were the preparation of a target via electrodeposition of ⁶⁴Ni on a Au backing, a clean separation of ⁶⁴Cu via ion-exchange chromatography, and an efficient recovery of the enriched target material. The technology was further developed in some laboratories [79-81] and batch yields of up to 40 GBq of ⁶⁴Cu were achieved. Several other optimization studies have also been performed [82-87]. Many small hospital-based laboratories are now producing this radionuclide in amounts sufficient for local use. A few newer developments are related to more efficient chemical separation and purification of ⁶⁴Cu [88-91]. There has been some emphasis on automation of the production procedure as well [92-96]. Thus, considerable interest has been aroused in recent years in the production of ⁶⁴Cu via this route. Due to the increasing demand for this radionuclide, on one hand solution targets similar to those for ^{44g}Sc mentioned above are being developed [97] and, on the other, a commercialization of the process is being pursued. However, it should be mentioned that small amounts of ⁶⁴Cu have also been produced via the nuclear processes ⁶⁴Zn(d,2p)⁶⁴Cu [98, 99] and ⁶⁸Zn(p,αn)⁶⁴Cu [100-103], the latter partly as a by-product in the production of ⁶⁷Ga via the ⁶⁸Zn(p,2n)⁶⁷Ga reaction.

Production of ⁶⁷Cu

The production of the therapeutic radionuclide 67 Cu ($T_{\frac{1}{2}}$ = 2.58 d) in no-carrier-added form has also been under consideration for more than 40 years and the knowledge available till 2011 was critically reviewed [104]. A few other later reviews dealt with the newer information [17, 105-107]. In this work therefore only some salient features are mentioned.

Similar to 64 Cu, the production of 67 Cu in neutron induced reactions, especially in a nuclear reactor via the 67 Zn(n,p) 67 Cu reaction ($\sigma_{FS} = 1.07 \pm 0.04$ mb) has received some new attention [69, 71], in particular by using 93% enriched 67 ZnO as target material [71]. The same threshold reaction has also been investigated with 14 MeV neutrons; however, by using a nat ZnO target [73]. A yet another method making use of the 68 Zn(n,np) 67 Cu reaction induced by fast neutrons, generated by breakup of 40 MeV deuterons on a graphite target, has also been utilized [108]. In those two works [73, 108] the fundamental separation and purification procedures were established. The 67 Cu obtained via the latter process using a 99.29% enriched 68 ZnO target was shown to be suitable for preclinical studies [109]. For large scale production, however, further development work using high neutron fluxes is needed.

Another reaction which has been under investigation for a long time is the 68 Zn(γ ,p) 67 Cu process. In one early study nat Zn was used as target material [110] and in another 98.97% enriched 68 ZnO was employed [111]. In both cases chemical separation of the product 67 Cu was carried out. The batch yield achieved was up to 185 MBq but the chemical purity would not meet the standard required today. With the increasing significance of 67 Cu combined with the development of powerful electron accelerators, in

recent years the efforts to utilize the 68 Zn(γ ,p) 67 Cu reaction for 67 Cu production have been intensified [64, 112-115]. Production yields of 67 Cu have been measured experimentally and compared with theoretically calculated values [112, 113], extensive purification methodology was developed [114], simulation studies were performed and predicted activities were verified with experimental data [64, 115]. The yield of 67 Cu achieved amounts to about 1 MBq g $^{-1}$ kW $^{-1}$ h $^{-1}$. Thus, tens of MBq of 67 Cu can easily be produced. It is expected that with further intensification of technological efforts to develop high-intensity accelerators (possibly up to 100 kW power), it should be possible to produce 67 Cu in GBq quantities.

In addition to the neutron and photon induced reactions described above for the production of 67 Cu, considerable effort has been invested over the years to make use of charged-particle induced reactions as well. The four nuclear processes investigated are listed in **Table 3**. The suitable energy ranges and the calculated thick target yields are based on evaluated excitation functions [116] and a few other measurements. However, it should be mentioned that a new measurement on the 68 Zn(p,2p) 67 Cu reaction [117] gives cross section values which are lower than the evaluated data up to 60 MeV by about 10%. If those values are accepted, the calculated yield of 67 Cu would decrease slightly. The yield values for the 70 Zn(d, α n) 67 Cu and 64 Ni(α ,p) 67 Cu reactions given in **Table 3** were derived from individual experimental cross section curves, for the former reaction from ref. [118] and for the latter from refs. [119,120].

As far as the practical production of 67 Cu is concerned, in the case of the 70 Zn(p, α) 67 Cu reaction two studies were performed, one using a 99.7% enriched 70 ZnO target [121] and the other using a 70% enriched 70 Zn electroplated target [122]. The separation yields were comparable but, as understandable, the radionuclidic purity of 67 Cu achieved was higher in the first study due to the higher enrichment of the target. The batch yield of 67 Cu obtained via this production route was, however, quite low. With

Table 3. Charged-particle induced nuclear reactions used for the production of ⁶⁷Cu.

Nuclear reaction	Energy range (MeV)	Calculated thick target yield (MBq/µAh)	Target (enrichment)	Production related work	Separation yield (%)	Radionuclidic purity (%)	Batch yield MBq [Ref.]
⁷⁰ Zn(p,α) ⁶⁷ Cu	18 → 12	2.2	⁷⁰ ZnO (99.7 %)	Irradiation at 4 µA; anion- exchange separation	> 80	> 99	0.8 [121] for 10 mg target
			⁷⁰ Zn electroplated (70 %)	Irradiation at 20 µA; solvent extraction and anion-exchange separation	> 80	> 85	14 [122]
⁷⁰ Zn(d,n\alpha) ⁶⁷ Cu	20 → 10	4.2	⁷⁰ Zn metal (95.35 %)	Low current irradiation of thin target; consective cation- and anion-exchange separation	> 90	> 90	0.95 [118]
⁶⁸ Zn(p,2p) ⁶⁷ Cu	$70 \rightarrow 30$	30	⁶⁸ ZnO (99.0 %)	Irradiation at 3 µA; ion- exchange chromatography	83	> 97	117 [127]
			⁶⁸ ZnO (99.7 %)	Irradiation at 100 μA; extensive chemical processing	> 92	mixture of ⁶⁴ Cu and ⁶⁷ Cu ^{a)}	1.6×10^3 [128]
⁶⁴ Ni(α,p) ⁶⁷ Cu	35 → 10	0.8	⁶⁴ Ni electroplated (99.07 %)	Irradiation at 15 μA; cation- exchange separation	> 90	> 75	55 [123]

^{a)} Using an incident proton beam of 92 MeV.

regard to the 70 Zn(d, α n) 67 Cu reaction, the production test involved only low current irradiation of a very thin target and so the batch yield achieved was very low [118]. There is the possibility to produce larger quantities of 67 Cu if thicker targets are used. The reaction 64 Ni(α ,p) 67 Cu also leads to a

relatively low yield of 67 Cu because of the low cross section and the low range of α -particles. Nonetheless, a suitable target was prepared and, after a 7 hour irradiation with 36 MeV α -particles at 15 μ A, followed by chemical separation, a total of 55 MBq of 67 Cu was achieved [123]. The product was chemically very pure and was used in preclinical studies [123]. The level of 64 Cu impurity was, however, somewhat high.

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

370

371

372

373

374

In contrast to the above mentioned three low yield processes, the reaction ⁶⁸Zn(p,2p)⁶⁷Cu at intermediate energies leads to a much higher yield. It has therefore been receiving more attention. It was originally utilized for production of ⁶⁷Cu by irradiation with protons of energies about 180 MeV followed by chemical separation [48, 61, 124]. The yield was very high but the specific activity was low. Later investigations concentrated more over the energy region up to 70 MeV, utilizing highly enriched ⁶⁸Zn as target material and extensive chemical processing [125-127]. Further extensive work has recently been reported using about 100 MeV protons [128]. The suggested production energy range is, however, $E_p = 70 \rightarrow 30 \text{ MeV}$ [105]; at higher energies a considerable amount of inactive ⁶⁵Cu is formed via the ⁶⁸Zn(p,2p2n)⁶⁵Cu reaction which decreases the specific activity of ⁶⁷Cu. Using an incident proton energy of about 92 MeV, batch yields of a few GBq of ⁶⁷Cu have been achieved at BNL. However, the product contains about 5 times more ⁶⁴Cu than ⁶⁷Cu. Thus further optimization work utilizing lower proton energies is needed. A further newer approach is to harvest ⁶⁷Cu from the cooling loop of the Facility for Rare Isotopes (FRIB) presently under construction; some preliminary results have been obtained by analysis of a few samples from the aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL) [129].

393394

395

396

397

398

From the above discussion it is obvious that the development of production methods of ⁶⁷Cu is of great timely interest because it is one of the most important theranostic radionuclides. Diversified efforts are underway to obtain it in sufficient quantity and good quality for medical applications.

3.3 Theranostic pair 83Sr/89Sr

Strontium is an important bone seeking element. The radionuclides of strontium could therefore be used in diagnostic and therapeutic studies related to bone. The β^- -emitting 89 Sr ($T_{1/2} = 50.5$ d) is one of the earliest known radionuclides to cure metastases in bone. It also finds application in palliation studies. The β^+ -emitting analogue 83 Sr ($T_{1/2} = 32.4$ h) should be suitable for theranostic application. As far as we know, to date no PET measurement has been reported using 83 Sr; yet its decay properties suggest that it is potentially suitable.

Production of 83Sr

Regarding the production of no-carrier-added ⁸³Sr, excitation functions were measured for the ⁸⁵Rb(p,xn)⁸¹⁻⁸⁵Sr processes up to 100 MeV [130, 131] and ⁸²Kr(³He,xn)^{82,83}Sr reactions up to 36 MeV [132]. Therefrom the suitable energy ranges for the production of ⁸³Sr via those two processes were deduced. The calculated thick target yields of the radionuclides formed in the interactions of protons with ⁸⁵Rb are [131] shown in **Fig. 2**. The optimum energy range for the production of ⁸³Sr is $E_p = 37 \rightarrow 30$ MeV, whereby the yield of ⁸³Sr amounts to 160 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation) and the levels of the two long-lived impurities ⁸⁵Sr (T½ = 64.9 d) and ⁸²Sr (T½ = 25.3 d) are 0.24% and 0.04%, respectively. A similar analysis for the ³He-particle induced reactions on ⁸²Kr showed that the optimum energy range for the production of ⁸³Sr is $E_{3He} = 18 \rightarrow 10$ MeV, whereby the yield of ⁸³Sr amounts to 5.1 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation) and the level of the only impurity ⁸²Sr is 0.20%. The method of choice for the production of ⁸³Sr is thus the ⁸⁵Rb(p,3n)-reaction, although the availability of 40 MeV protons is often a problem.

Irradiations of several targets with low beam currents of 40 MeV protons and 18 MeV ³He-particles were carried out to measure experimental thick target yields. In the former case, pressed ⁸⁵RbCl pellets absorbing about 5 MeV of the proton beam were used and, in the latter, ⁸²Kr gas absorbing about 8 MeV of the ³He-particle energy was irradiated in a special target system [133]. Highly efficient separation methods, using high performance liquid chromatography, were developed to obtain radiostrontium of high quality [131]. The results were compared with the theoretical data. The radionuclide ⁸³Sr was obtained in quantities of up to 20 MBq via the (p,3n) process and up to 5 MBq via the

(³He,2n) reaction [131]. A clinical scale production was, however, not demonstrated.

Nevertheless, it should be possible to obtain 83Sr in quantities sufficient for medical

application by using the technology developed for the production of ⁸²Sr (parent of ⁸²Sr/

⁸²Rb generator system), except that the proton energy incident on the ⁸⁵RbCl target should

be 40 MeV instead of 70 MeV used in the ⁸²Sr production.

Production of ⁸⁹Sr

As far as the production of the therapeutic radionuclide 89 Sr is concerned, some use has been made of the 88 Sr(n, γ) 89 Sr reaction. However, due to the very low specific activity, the product 89 SrCl₂ has been used only in palliative therapy of malignant metastases to the skeleton. For preparation of radiopharmaceuticals with high specific activity, a production route involving the neutron threshold reaction 89 Y(n,p) 89 Sr has been developed. The cross section averaged for the fission neutron spectrum is low ($\sigma_{FS} = 0.31 \pm 0.06$ mb [62]); therefore long irradiations are needed. The target material consisting of Y₂O₃ powder, pressed to a pellet, is placed in an Al capsule. The irradiation is done for several weeks at a high fast neutron flux of 1-2 x10¹⁵ n cm⁻² s⁻¹. Thereafter the chemical processing starts by dissolving the irradiated target in HNO₃ and extracting the bulk of yttrium in tributylphosphate. The purification of 89 Sr is done by incorporating several cation-exchange chromatographic steps. The finally purified product is then obtained as 89 SrCl₂ in dilute HCl in a batch yield of about 20 GBq. Large quantities of this radionuclide are produced mainly at the reactor RIAR in Dimitovgrad, Russia [134, 135]. It is then shipped to various parts of the world.

3.4 Theranostic pair ⁸⁶Y/⁹⁰Y

As mentioned in the introduction, this was the first pair of radionuclides used for theranostic studies. Its development has been described in detail in a recent publication [7]. In this article therefore only a very brief account is given.

For the production of the positron emitter 86 Y ($T_{\frac{1}{2}} = 14.7$ h), the nuclear reactions 86 Sr(p,n) 86 Y, 88 Sr(p,3n) 86 Y, nat Zr(p,x) 88 Y and nat Rb(3 He,xn) 86 Y were investigated (for

references see [136]). Very recently the nuclear process 89 Y(p,4n) 86 Zr $\xrightarrow{EC,\beta^+}$ 86 Y has also been reported [137]. The method of choice for production of ⁸⁶Y, however, is the ⁸⁶Sr(p,n)⁸⁶Y reaction on a highly enriched target, originally reported by the Jülich group [5, 6]. Over the optimum energy range of $E_p = 14 \rightarrow 7$ MeV the expected thick target yield of 86 Y amounts to 371 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation). Although an evaluation revealed discrepancy in nuclear data [136], the production technology has been well developed. For irradiation mostly solid 97% enriched 86SrCO₃ target is used at a proton beam current of about 10 µA. For the chemical separation of radioyttrium, two methods have been advantageously used:

- a) Co-precipitation with La(OH)₃, followed by cation-exchange chromatography,
- b) Electrolytic removal of radioyttrium.

A detailed discussion of the separation procedures is given in ref. [7]. Batch yields of a few GBq of ⁸⁶Y have been reported. At a few medical cyclotrons, solution targets have been developed to produce small quantities of ⁸⁶Y for local use. The radionuclidic purity of ⁸⁶Y amounts to > 97%; the major impurity ^{87m}Y originates from the small amount of the isotope ⁸⁷Sr present in the enriched ⁸⁶Sr target. Due to great demand for this radionuclide, efforts are underway to commercialize its production.

As regards the production of the β^- -emitter ${}^{90}Y$ ($T_{\frac{1}{2}}$ = 2.7 d), it could be done via the ${}^{89}Y(n,\gamma){}^{90}Y$ process, but the specific activity is very low. No-carrier-added ${}^{90}Y$ is therefore generally obtained via the ${}^{90}Sr/{}^{90}Y$ generator system. The parent activity ${}^{90}Sr$ ($T_{\frac{1}{2}}$ = 28.6 a) is separated from the fission products and fixed on a generator column. The daughter ${}^{90}Y$ is eluted about once a week using 2N HCl as eluent. About 3-5 GBq quantities of ${}^{90}Y$ are collected in 0.5 mL of the eluent. Such generator systems are commercially available.

3.5 Theranostic pair ¹²⁴I/¹³¹I

This is a unique pair of radionuclides. In contrast to the four metallic pairs discussed above, namely ^{44g}Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁸³Sr/⁸⁹Sr and ⁸⁶Y/⁹⁰Y, this pair belongs to the group of

halogens which form a rather strong covalent bond and have therefore been frequently applied following the "analogue" approach. A large number of radiopharmaceuticals have been developed using halogens. Thus, both ¹²⁴I and ¹³¹I find applications both individually and collectively as a theranostic pair.

492

493

494

495

496

497

488

489

490

491

The therapeutic use of ¹³¹I has been successfully practised for more than 70 years, especially in treatment of thyroid diseases. The use of ¹²⁴I is relatively new. It was first proposed in 1988 by Lambrecht et al. [138]. Since then extensive studies on its production and preparation of radiopharmaceuticals have been performed. Today it is widely used in tumour targeting as well as in thyroid dosimetry.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

The various methods investigated for the production of ${}^{124}\mathbf{I}$ ($T_{\frac{1}{2}} = 4.18$ d) have been extensively reviewed [139]. A critical analysis of the cross section data was performed [140, 141]. A summary of the results was given [106]. It was concluded that the ¹²⁴Te(p,n)¹²⁴I reaction, originally suggested by Scholten et al. [142] is the method of choice for the production of 124 I. For a 99.8% enriched 124 Te target over the energy range $E_p = 12$ \rightarrow 8 MeV the expected ¹²⁴I yield is 16 MBq μ A⁻¹ h⁻¹ (for 1h irradiation). This yield is not very high, but the product obtained is of the highest radionuclidic purity, the level of the associated long-lived 125 I ($T_{\frac{1}{2}} = 60.0$ d) impurity being < 0.1%. On the other hand, it is felt that the $^{125}\text{Te}(p,2n)^{124}\text{I}$ reaction [143] over the energy range $E_p = 21 \rightarrow 15$ MeV may also be quite useful; the yield of ¹²⁴I is 5 times higher than that via the (p,n) reaction and the level of the ¹²⁵I Impurity is < 1%. Today, for clinical scale production of ¹²⁴I, the ¹²⁴Te(p,n)¹²⁴I reaction is almost universally applied and batch yields of a few GBq are obtained. The procedure commonly involves irradiation of a ¹²⁴TeO₂ target and removal of radioiodine by a distillation process at about 750 °C [144-150]. A detailed review of the distillation parameters used by various groups was presented [139]. Radioiodine is generally collected almost quantitatively in 0.3 mL of 0.02 M NaOH solution. Its radiochemical form is checked by high performance liquid chromatography (HPLC); it is > 98% iodide which is very suitable for subsequent synthesis steps. The enriched target material is regenerated (without any substantial loss) for reuse.

In recent years the separation of radioiodine from α -particle irradiated antimony was also investigated using solvent extraction and ion-chromatographic techniques [151-153]. The radionuclidic purity of the product achieved was quite high. However, due to the low batch yield of ¹²⁴I, those methods have not found much practical application.

As far as the production of 131 I ($T_{1/2} = 8.02$ d) is concerned, the methodology is well established [cf. 154]. It is a reactor radionuclide and is produced either via the fission process (as a subsidiary of 99 Mo production) or via the route 130 Te(n,γ) 131m,g Te $\xrightarrow{\beta^-}$ 131 I. In the latter case, both dry and wet distillation methods have been used for the separation of radioiodine. Large quantities of 131 I are commercially available.

3.6 Theranostic pairs ¹⁵²Tb/¹⁶¹Tb and ¹⁵²Tb/¹⁴⁹Tb

These two pairs of radionuclides are rather exotic but very promising. In recent years there has been an increasing interest in the application of radiolanthanides in imaging and therapy, especially because a trivalent lanthanide forms stable complexes with many oxygen-containing bifunctional chelators. The imaging is generally done by SPECT which, however, is not quantitative. The radionuclide 152 Tb ($T_{1/2} = 17.5$ h) is the only suitable β^+ -emitter in the region of lanthanides which has been successfully developed for PET measurements. It can thus serve as an exact diagnostic match to the β^- -emitting therapeutic radionuclide 161 Tb ($T_{1/2} = 6.9$ d) as well as to the α -particle emitting therapeutic radionuclide 149 Tb ($T_{1/2} = 4.1$ h), whose potential in therapy was first suggested by Allen and Blagojevic [155]. In fact these three radionuclides together with the Auger electron emitter 155 Tb ($T_{1/2} = 5.3$ d) make the element terbium very versatile for medical applications, somewhat similar to copper and iodine.

Development of ¹⁵²Tb and ¹⁴⁹Tb

Work on the development of the β^+ -emitter ^{152}Tb and the α -particle emitter ^{149}Tb has been going on for quite some time and two rather uncommon reactions have been investigated for their production.

a) *Heavy-ion induced reactions*, first studied in Sydney [156,157]. Using a natural Nd target, ¹⁵²Dy was produced over the energy range of 80 to 110 MeV. The contributing reactions were ¹⁴²Nd(¹²C,2n)¹⁵²Dy, ¹⁴³Nd(¹²C,3n)¹⁵²Dy, ¹⁴⁴Nd(¹²C,4n)¹⁵²Dy and ¹⁴⁵Nd(¹²C, 5n)¹⁵²Dy. The product ¹⁵²Dy decays with a half-life of 2.4 h to ¹⁵²Tb. After irradiation the thick Nd metal target was therefore allowed to decay for about 12 hours, thereafter it was dissolved in 6 M HNO₃, evaporated to dryness and the residue redissolved in α-hydroxyisobutyric acid (α-HIBA). The separation of no-carrier added ¹⁵²Tb was then achieved through cation-exchange chromatography. The batch yield of ¹⁵²Tb amounted to a few MBq. It was sufficient for tracer studies but not for a PET phantom measurement. In the same Nd target irradiated with ¹²C ions, the α-particle emitting ¹⁴⁹Tb was formed via the ¹⁴²Nd(¹²C, 5n)¹⁴⁹Dy → ¹⁴⁹Tb process. Its batch yield amounted to a few MBq [157].

b) *Spallation reaction*, first studied at CERN [156]. A tantalum foil was irradiated with 1000 MeV protons. The spallation products were released from the target at 2400 °C. The ionized products were separated electromagnetically at the ISOLDE facility. The spallation products of mass number 152 were collected and subjected to a two-step separation procedure, similar to the one used in the separation of ⁸⁶Y [5], viz. at first coprecipitation of radioterbium with La(OH)₃, then removal of radioterbium from lanthanum by cation-exchange chromatography. The batch yield of ¹⁵²Tb amounted to 770 MBq [156]. A PET phantom measurement demonstrated the feasibility of using ¹⁵²Tb for monitoring the behavior of therapeutic terbium radionuclides [156].

Following the successful production of ¹⁵²Tb via the spallation process, several optimization studies and further development work were carried out, in particular with regard to on-line mass separation [158, 159]. To demonstrate the utility of ¹⁵²Tb, a proof of concept study was performed with ¹⁵²Tb-labelled folate in a mouse bearing folate receptor (FR)-positive tumours [158]. A more detailed in vivo imaging study using several other ¹⁵²Tb-labelled compounds showed the potential of this radionuclide for PET studies [159]. Very recently the first application of this positron emitter in human PET/CT has

been convincingly demonstrated [160]. The significance of this radionuclide is thus increasing.

Besides the application of the spallation process to the production of 152 Tb, many investigations on other possible production reactions have also been carried out. They deal either with cross section measurements of proton and deuteron induced reactions on gadolinium and dysprosium [161-166] or with chemical separation of radioterbium from gadolinium irradiated with protons [167], europium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum isotopes in the intermediate energy range appear to be promising. An example is given in **Fig. 3**, which has been adapted from the data of Steyn et al. [162]. The cross section of the α -particles [155] Tb reaction is fairly high and over the energy range of α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [169] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [168] or lanthanum and cerium irradiated with α -particles [169] or lanthanum and cerium irradiated with α -particles [16

With regard to the production of the therapeutic radionuclides of terbium, the case of the α -particle emitter ¹⁴⁹Tb has been mentioned above. Its production in tracer quantities via the heavy-ion induced reaction was reported [157]. Subsequently, Beyer et al. [171, 172] produced this radionuclide on a clinical scale via spallation of tantalum with 1400 MeV protons in conjunction with on-line isotope separation at CERN, and demonstrated direct evidence for single cancer cell killing using ¹⁴⁹Tb-rituximab. In general, however, the availability of this radionuclide is rare. On the other hand the cross sections of a few (p,xn) reactions on a few gadolinium isotopes, leading to the formation of ¹⁴⁹Tb, have been described [162]. They appear to be interesting for production purposes but specific production methodology needs to be developed.

Production of ¹⁶¹Tb

The production of the β^- -emitting therapeutic radionuclide 161 Tb is usually done in a nuclear reactor via the sequence 160 Gd $(n,\gamma)^{161}$ Gd $\xrightarrow{\beta^-}$ 161 Tb. In general, an enriched 160 Gd target is irradiated with a high neutron flux and separation of 161 Tb from the gadolinium

target is done by cation-exchange chromatography with α -HIBA, followed by concentration of 161 Tb solution [158, 173, 174], There is, however, some difficulty in the production process. The intermediate nuclide 161 Gd ($T_{\frac{1}{2}}$ = 3.7 min) has a very high neutron capture cross section ($\sigma_{th} \approx 20000$ b) so that the formation of 161 Tb through the β^- -decay of 161 Gd is in strong competition with the formation of 162 Gd through the (n,γ) reaction. A short irradiation with a high neutron flux is advantageous. In general, the radionuclide 161 Tb could be made available in sufficient quantities.

4. Concluding remarks

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

The theranostic approach in nuclear medicine, i.e. administering to a specific person two radionuclides of the same element in the same chemical form, one emitting positrons and the other highly-ionizing low-range radiation to cause therapeutic effect, is gaining increasing significance because it constitutes "personalized medicine". In this review seven such pairs have been dealt with and their production methods have been discussed. The positron emitters ⁶⁴Cu, ⁸⁶Y and ¹²⁴I are well characterized and the respective production technology using the (p,n) reaction on the respective highly enriched target isotope is well developed. The positron emitter 44gSc is presently attracting great attention. Though its clinical scale production has been achieved via two routes, namely the 44Ti/44gSc generator system and the direct production via the (p,n) reaction, further development work is necessary to ensure its large scale production. The basic methodology for production of the positron emitter ⁸³Sr has also been demonstrated but due to the need of an intermediate energy cyclotron, not much progress has been made with regard to its production on a clinical scale. The positron emitter ¹⁵²Tb is potentially very interesting. The production methodology developed so far, however, is rather exotic because it makes use of the spallation process in combination with on-line mass separation. Attempts are presently underway to produce it at an intermediate energy cyclotron/accelerator. All those positron emitters have either been shown to be, or are expected to be, suitable for PET measurements; only in the case of 86 Y the large number of associated γ -rays cause some difficulty, but after proper corrections, the images can be satisfactorily interpreted.

Regarding the therapeutic radionuclides, ⁸⁹Sr and ⁹⁰Y decay by emission of β^- particles of intermediate energy. Both are produced in a nuclear reactor, the former via the (n,p) reaction and the latter via the ⁹⁰Sr/⁹⁰Y generator system. The generator parent ⁹⁰Sr is separated from fission products. Both ⁸⁹Sr and ⁹⁰Y are commercially available. The β^- particle endpoint energies of the remaining four radionuclides, namely ⁴⁷Sc, ⁶⁷Cu, ¹³¹I and ¹⁶¹Tb are relatively low (< 610 keV). The radionuclide ¹³¹I is produced in a nuclear reactor either via fission or more commonly via the sequence ¹³⁰Te(n, γ)^{131m,g}Te \rightarrow ¹³¹I. It has been known for a very long time and is extensively used in internal radiotherapy. It is commercially available. The radionuclide ¹⁶¹Tb is also produced in a nuclear reactor through the sequence ¹⁶⁰Gd(n, γ)¹⁶¹Gd \rightarrow ¹⁶¹Tb and it is available in sufficient quantities. In recent years interest has also been growing in the comparison of the therapeutic effect of the four very similar β^- -particle emitters, namely ⁴⁷Sc, ⁶⁷Cu, ¹⁶¹Tb, and ¹⁷⁷Lu [173-175]. The radionuclides ⁴⁷Sc and ⁶⁷Cu are very interesting but difficult to produce. Therefore presently strong efforts are underway to produce them through neutron, photon and charged particle induced reactions.

In contrast to the above mentioned theranostic pairs of radionuclides consisting of a β^+ -emitter and a β^- -emitter, the pair $^{152}\text{Tb}/^{149}\text{Tb}$ is unique in that the radionuclide ^{152}Tb is a β^+ -emitter and ^{149}Tb is an α -emitter. The efficacy of ^{149}Tb for targeted α -therapy has been demonstrated but the exotic production route, involving spallation and on-line mass separation, makes its availability very rare. Further development work is called for.

Besides the 7 rather established theranostic pairs of radionuclides discussed in this review, the pair ⁷²As/⁷⁷As is in development [cf. 176-178]. Furthermore, there are 3 other pairs where the combination consists of a positron emitter and an Auger electron emitter as a therapeutic partner. They are ⁶⁸Ga/⁶⁷Ga, ¹¹⁰gIn/¹¹¹In and ¹⁵²Tb/¹⁵⁵Tb. However, since Auger therapy using the radionuclides ⁶⁷Ga, ¹¹¹In and ¹⁵⁵Tb is still developing, those pairs have not been considered in this review.

In conclusion, it may be stated that the field of theranostics is attracting tremendous attention today, but the availability of the respective radionuclides plays a very important

role. Concerted efforts are needed to produce several of the above mentioned radionuclides in quantities sufficient for clinical studies. Enhanced utilization of intermediate energy cyclotrons/accelerators would be very advantageous. Furthermore, for production of a few special radionuclides, use of powerful electron linear accelerators may be beneficial. Similarly, the use of some rather unconventional methods, like heavy-ion induced reactions and on-line mass separation of radioactive products, may also be worthwhile, especially for small scale production of some exotic radionuclides for tracer studies.

References

- 678 679 1. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine.
- 680 Radiochim Acta 70/71:249-272
- 2. Zimmer AM, Kuzel TM, Spies WG, Duda RB, Webber DI, Kazikiewicz JM,
- Radosevich JA, LoCicero J, Robinson PG, Gilyon KA, Samuelson E, Spies
- SM, Rosen ST, Maguire RT (1992) Comparative pharmacokinetics of ¹¹¹In and ⁹⁰Y
- B72.3 in patients following single dose intravenous administration. Antib
- 685 Immunoconjug Radiopharm 5:285-294
- 686 3. Mausner LF, Srivastava SC (1993) Selection of radionuclides for
- radioimmunotherapy. Med Phys 20:503-509
- 688 4. Rösch F, Qaim SM, Stöcklin, G (1993) Nuclear data relevant to the production of
- the positron emitting radioisotope ⁸⁶Y via the ⁸⁶Sr(p,n)- and ^{nat}Rb(³He,xn)-
- 690 processes. Radiochim Acta 61:1-8
- 691 5. Rösch F, Qaim SM, Stöcklin G. (1993) Production of the positron emitting
- radioisotope ⁸⁶Y for nuclear medical application. Appl Radiat Isot 44:677-681
- 693 6. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE (1993)
- Measurement of pharmacokinetics of ⁸⁶Y radiopharmaceuticals with PET and
- radiation dose calculation of analogous ⁹⁰Y radiotherapeutics. J Nucl Med 34:2222-
- 696 2226
- 697 7. Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the
- theranostic approach in nuclear medicine, as exemplified by the radionuclide pair
- 699 86Y and 90Y. Pharmaceuticals 10:56(1-28)
- 700 8. Lederer CM, Shirley VS, Ed. (1978) Table of Isotopes, 7th ed., John Wiley and
- 701 Sons, New York, NY, USA, Volume 99:1-1523
- 9. Eckerman KF, Endo A (2007) Radionuclide Decay Data and Decay Schemes. SNM
- 703 MIRD Committee: Reston, VA, USA
- 704 10. Evaluated Nuclear Structure and Decay File (ENSDF), BNL, USA. Available
- online: www.nndc.bnl.gov/ensdf (accessed on 6 June 2017)
- 706 11. Qaim SM, Bisinger T, Hilgers K, Nayak D, Coenen HH (2007) Positron emission
- intensities in the decay of ⁶⁴Cu, ⁷⁶Br and ¹²⁴I. Radiochim Acta 95:67-73

- 708 12. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM (2008) PET imaging
- problems with the non-standard positron emitters ⁸⁶Y and ¹²⁴I. Q J Nucl Med Mol
- 710 Imaging 52:159-165
- 711 13. Lubberink M, Herzog H (2011) Quantitative imaging of ¹²⁴I and ⁸⁶Y with PET.
- Fur J Nucl Med Mol Imaging (Suppl. 1) 38:10
- 713 14. Herzog H, Tellmann L, Qaim SM, Spellerberg S, Schmid A, Coenen HH (2002)
- PET quantitation and imaging of the non-pure positron-emitting iodine isotope ¹²⁴I.
- 715 Appl Radiat Isot 56:673-679
- 716 15. Bunka M, Müller C, Vermeulen C, Haller S, Türler, A., Schibli, R., van der Meulen,
- 717 N.P. (2016) Imaging quality of ⁴⁴Sc in comparison with five other PET
- radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot
- 719 110:129-133
- 720 16. Qaim SM (2011) Development of novel positron emitters for medical applications:
- nuclear and radiochemical aspects. Radiochim Acta 99:611-625
- 722 17. Qaim SM, Spahn I (2018) Development of novel radionuclides for medical
- 723 applications. J Label Compd Radiopharm 61:126-140
- 18. Ejnisman R, Goldman ID, Pascholati PR, daCruz MTF, Oliveira RM, Norman EB,
- 725 Zlimen I, Wietfeldt FE, Larimer RM, Chan YD, Lesko KT, Garcia A (1996) Cross
- sections for ⁴⁵Sc(p,2n)⁴⁴Ti and related reactions. Phys Rev C 54:2047-2050
- 727 19. Daraban L, Rebeles RA, Hermanne A, Tárkányi F, Takács S (2009) Study of the
- excitation functions for ⁴³K, ⁴³Sc, ⁴⁴Sc, ^{44m}Sc and ⁴⁴Ti by proton irradiation on ⁴⁵Sc
- 729 up to 37 MeV. Nucl Instrum Methods B 267:755-759
- 730 20. Seidl E, Lieser KH (1973) ¹¹³Sn/^{113m}In, ⁶⁸Ge/⁶⁸Ga and ⁴⁴Ti/⁴⁴Sc radionuclide
- 731 generators. Radiochim Acta 19:196-198
- 732 21. Filosofov DV, Loktionova NS, Rösch F (2010) A ⁴⁴Ti/⁴⁴Sc radionuclide generator
- for potential application of ⁴⁴Sc-based PET-radiopharmaceuticals. Radiochim Acta
- 734 98:149-156
- 735 22. Pruszynski M, Loktionova NS, Filosofov DV, Rösch F (2010) Post-elution
- processing of ⁴⁴Ti/⁴⁴Sc generator-derived ⁴⁴Sc for clinical application. Appl Radiat
- 737 Isot 68:1636-1641

- 738 23. Radchenko V, Engle JW, Medvedev DG, Maassen JM, Naranjo CM, Unc GA,
- Meyer CAL, Mastren T, Brugh M, Mausner L, Cutler CS, Birnbaum ER, John
- 740 KD, Nortier FM, Fassbender ME (2017) Proton-induced production and
- radiochemical isolation of ⁴⁴Ti from scandium metal targets for ⁴⁴Ti/⁴⁴Sc generator
- 742 development. Nucl Med Biol 50:25-32
- 743 24. Radchenko V, Meyer CAL, Engle JW, Naranjo CM, Unc GA, Mastren T, Brugh
- M, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2016) Separation of ⁴⁴Ti
- from proton irradiated scandium by using solid-phase extraction chromatography
- and design of ⁴⁴Ti/⁴⁴Sc generator system. J Chromatogr A 1477:39-46
- 747 25. de Waal TJ, Peisach M, Pretorius R (1971) Activation cross sections for proton-
- induced reactions on calcium isotopes up to 5.6 MeV. J Inorg Nucl Chem 33:2783-
- 749 2789
- 750 26. Levkovskii N (1991) Middle Mass Nuclides (A = 40 100) Activation Cross
- Sections by Medium Energy (E = 10 50 MeV) Protons and Alpha Particles
- 752 (Experiment and Systematics), Inter-Vesti, Moscow, 215 pp.
- 753 27. Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U,
- Bilewicz, A. (2013) Cyclotron production of ⁴⁴Sc for clinical application.
- 755 Radiochim Acta 101:333-338
- 756 28. Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, Scampoli
- P, Türler A, van der Meulen N (2017) Measurement of ⁴³Sc and ⁴⁴Sc production
- cross section with an 18 MeV medical PET cyclotron. Appl Radiat Isot 129:96-102
- 759 29. Al-Abyad M, Mohamed GY, Hassan HE, Takács S, Ditrói F (2018) Experimental
- measurements and theoretical calculations for proton, deuteron and alpha-particle
- induced nuclear reactions on calcium: special relevance to the production of ⁴³Sc,
- 762 ⁴⁴Sc. J Radioanal Nucl Chem 316:119-128
- 763 30. Duchemin C, Guertin A, Haddad F, Michel N, Metivier V (2015) Production of
- 764 44mSc and 44gSc with deuterons on 44Ca: cross section measurements and production
- yield calculations. Phys Med Biol 60:6847-6864
- 766 31. Riley C, Linder B, Ueno K (1964) Cross sections and isomer ratios for
- 767 41 K(α ,n) 44m,44g Sc reaction. Phys Rev B 135:1340-1344

- 768 32. Scott AF, Morton AJ, Tingwell CJW, Tims SG, Hansper VY, Sargood DG (1991)
- 769 Cross sections and thermonuclear reaction rates for 41 K(α ,n) 44 Sc and 41 K(α ,p) 44 Ca.
- 770 Nucl Phys A 523:373-385
- 771 33. Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of
- excitation functions of ¹⁰⁰Mo(p,d+pn)⁹⁹Mo and ¹⁰⁰Mo(p,2n)^{99m}Tc reactions:
- estimation of long-lived Tc-impurity and its implication on the specific activity of
- 774 cyclotron-produced ^{99m}Tc Appl Radiat Isot 85:101-113
- 34. Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ (2012) Cyclotron
- produced ^{44g}Sc from natural calcium. Appl Radiat Isot 70:1526-1530
- 777 35. Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ (2015)
- Separation of cyclotron-produced ⁴⁴Sc from a natural calcium target using a
- dipentyl pentylphosphonate functionalized extraction resin. Appl Radiat Isot 95:23-
- 780 29
- 781 36. Rangacharyulu C, Fukuda M, Kanda H, Nishizaki S, Takahashi N (2017)
- Assessment of ⁴³Sc, ⁴⁴Sc isotope production in proton- and alpha- induced
- reactions. J Radioanal Nucl Chem 314:1967-1971
- 784 37. Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang MR (2016)
- Production of ⁴³Sc and ⁴⁷Sc from a powdery calcium oxide target via the
- 786 nat/44Ca(alpha,x)-channel. Appl Radiat Isot 116:8-12
- 787 38. Szkliniarz K, Sitarz M, Walczak R, Jastrzebski J, Bilewicz A, Choinski J,
- Jakubowski A, Majkowska A, Stolarz A, Trzcinska A, Zipper W (2016) Production
- of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 118:182-
- 790 189
- 791 39. Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S (2015) Cyclotron
- production of high purity ^{44m}Sc, ⁴⁴Sc with deuterons from (CaCO₃)⁴⁴Ca targets.
- 793 Nucl Med Biol 42:524-529
- van der Meulen NP, Bunka M, Domnanich KA, Müller C, Haller S, Vermeulen C,
- Türler A, Schibli R (2015) Cyclotron production of ⁴⁴Sc: from bench to bedside.
- 796 Nucl Med Biol 42:745-751

- 797 41. Huclier-Markai S, Alliot C, Rousseau J, Chouin N, Fani M, Bouziotis P, MainaT,
- 798 Cutler CS, Barbet J (2014) Promising prospects of 44mSc/44Sc as an in vivo
- generator: biological evaluation and PET images. Nucl Med Biol 41: p. 631
- 800 42. Qaim SM, Spahn I, Scholten B, Neumaier B (2016) Uses of alpha particles,
- 801 especially in nuclear reaction studies and medical radionuclide production.
- 802 Radiochim Acta 104: 601-626
- 803 43. Hoehr C, Oehlke E, Bernárd F, Lee CJ, Hou X, Badesso B, Ferguson S, Miao Q,
- Yang H, Buckley K, Hanemaayer V, Zeisler S, Ruth T, Celler A, Schaffer P (2014)
- 805 44gSc production using a water target on a 13 MeV cyclotron. Nucl Med Biol
- 806 41:401-406
- 807 44. Das MK, Sarkar BR, Ramamoorthy N (1990) Yields of some radioisotopes formed
- in alpha-particle induced reactions on titanium and recovery of scandium
- radionuclides. Radiochim Acta 50:135-139
- 810 45. Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier-free ⁴⁷Sc from
- 811 titanium targets. J Radioanal Nucl Chem Articles 157:335-345
- 812 46. Das NR, Banerjee S, Lahiri S (1995) Sequential separation of carrier-free ⁴⁷Sc, ⁴⁸V
- and 48,49,51 Cr from α -particle activated titanium with TOA. Radiochim Acta 1995,
- **69**, 61-64
- 815 47. Lahiri S, Banerjee S, Das NR (1996) LLX separation of carrier-free ⁴⁷Sc, ⁴⁸V and
- 816 48,49,51 Cr produced in α -particle activated titanium with HDEHP. Appl Radiat Isot
- 817 47:1-6
- 818 48. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide
- development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285-294
- 820 49. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical
- purification of no-carrier-added ⁴⁷Sc for radioimmunotherapy. Appl Radiat Isot
- 822 49:1541-1549
- 823 50. Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added
- radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem
- 825 283:389-393

- 826 51. Bartos B, Majkowska A, Kasperek A, Krajewski S, Bilewicz A (2012) New
- separation method of no-carrier-added ⁴⁷Sc from titanium targets. Radiochim Acta
- 828 100:457-461
- 829 52. Deilami-Nezhad L, Moghaddam-Banaem L, Sadeghi M, Asgari M (2016)
- Production and purification of ⁴⁷Sc: a potential radioisotope for cancer theranostics.
- 831 Appl Radiat Isot 118:124-128
- 832 53. Yagi M, Kondo K (1977) Preparation of carrier-free ⁴⁷Sc by ⁴⁸Ti(γ,p) reaction. Int
- 833 J Appl Radiat Isot 28:463-468
- 834 54. Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD,
- Gromov RG, Greene J (2018) Electron linear accelerator production and
- purification of ⁴⁷Sc from titanium dioxide targets. Appl Radiat Isot 131:77-82
- 837 55. Hara T, Freed BR (1973) Preparation of carrier-free ⁴⁷Sc by chemical separation
- from ⁴⁷Ca and its distribution in tumor bearing mice. Int J Appl Radiat Isot 24:373-
- 839 376
- 840 56. Bilewicz A, Walczak R, Majkowska A, Misiak R, Choinski J, Sitarz M, Stolarz A,
- Jastrzebski J (2016) Cyclotron production of theranostic pair ⁴³Sc/⁴⁷Sc on calcium
- targets. Eur J Nucl Med Mol Imaging (Suppl) 43:S135-S136
- S43 57. Chakravarty R, Chakraborty S, Ram R, Dash A (2017) An electroamalgamation
- approach to separate ⁴⁷Sc from neutron-activated ⁴⁶Ca target for use in cancer
- theranostics. Separation Science and Technology 52:2363-2371
- 846 58. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt, P, van der Meulen
- N, Türler A, Schibli R (2014) Promising prospects for 44Sc/47Sc-based
- theragnostics: application of ⁴⁷Sc for radionuclide tumor therapy in mice. J Nucl
- 849 Med 55:1658-1664
- 850 59. Gladney ES, Goode WE (1979) Preparation of carrier-free ⁴⁷Sc by the ⁴⁷Ti(n,p)
- reaction with epithermal neutrons. Int J Appl Radiat Isot 30:65
- 852 60. Mausner LF, Kolsky KL, Mease RC, Chinol M, Meinken GE, Straub RF, Pietrelli
- 853 RF, Steplewski Z, Srivastava SC (1993) Production and evaluation of ⁴⁷Sc for
- radioimmunotherapy. J Label Compd Radiopharm 32:388-390
- 855 61. Srivastava SC (2011) Paving the way to personalized medicine: production of

- some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim
- 857 Acta 99:635-640
- 858 62. Calamand A (1974) Cross sections for fission neutron spectrum averaged induced
- reactions, Technical Report No.156, IAEA, Vienna, Austria, p.273
- 860 63. Mamtimin M, Harmon F, Starovoitova VN (2015) ⁴⁷Sc production from titanium
- targets using electron linacs. Appl Radiat Isot 102:1-4
- 862 64. Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction
- of promising beta-emitters ⁶⁷Cu and ⁴⁷Sc. J Radioanal Nucl Chem 305:127-
- 864 132
- 865 65. Rane S, Harris JT, Starovoitova VN (2015) ⁴⁷Ca production for ⁴⁷Ca/⁴⁷Sc generator
- system using electron linacs. Appl Radiat Isot 97:188-192
- 867 66. Misiak R, Walczak R, Was B, Bartyzel M, Mietelski JW, Bilewicz A (2017) ⁴⁷Sc
- production development by cyclotron irradiation of ⁴⁸Ca. J Radioanal Nucl Chem
- 869 313: 429-434
- 870 67. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and
- radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957-980
- 872 68. Ma D, Lu F, Overstreet T, Milenic DE, Brechbiel MW (2002) Novel chelating
- agents for potential applications of copper. Nucl Med Biol 29: 91-105
- 874 69. Uddin MS, Rumman-uz-Zaman M, Hossain SM, Oaim SM (2014) Radiochemical
- measurement of neutron-spectrum averaged cross sections for the formation of ⁶⁴Cu
- and ⁶⁷Cu via the (n, p) reaction at a TRIGA Mark-II reactor: feasibility of
- simultaneous production of the theragnostic pair ⁶⁴Cu/⁶⁷Cu. Radiochim Acta
- 878 102:473-480
- 879 70. Bokhari TH, Mushtaq A, Khan IU (2010) Production of low and high specific
- activity ⁶⁴Cu in a reactor. J Radioanal Nucl Chem 284:265-271
- 881 71. Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Ünlu K (2015) Reactor
- production of ⁶⁴Cu and ⁶⁷Cu using enriched zinc target material. J Radioanal Nucl
- 883 Chem 305:61-71
- 884 72. Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the
- therapeutic radionuclides ⁶⁴Cu, ⁶⁷Cu and ⁸⁹Sr via (n,p) reactions induced by fast
- spectral neutrons. Radiochim Acta 92:183-186

- 887 73. Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K, Konno C,
- Nagai Y (2015) Production and separation of ⁶⁴Cu and ⁶⁷Cu using 14 MeV
- neutrons. J Radioanal Nucl Chem 303:1205-1209
- 890 74. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2009) Charged
- particle induced reaction cross section data for production of the emerging
- medically important positron emitter ⁶⁴Cu: a comprehensive evaluation. Radiochim
- 893 Acta 97:669-686
- 894 75. Uddin MS, Chakraborty AK, Spellerberg S, Shariff MA, Das S, Rashid MA, Spahn
- I, Qaim SM (2016) Experimental determination of proton induced reaction cross
- sections on ^{nat} Ni near threshold energy. Radiochim Acta 104:305-314
- 897 76. Szelecsényi F, Kovács Z, Nagatsu K, Zhang MR, Suzuki K (2014) Excitation
- function of (p,α) nuclear reaction on enriched ⁶⁷Zn: possibility of production of
- 899 ⁶⁴Cu at low energy cyclotron. Radiochim Acta 102:465-472
- 900 77. Szelecsényi F, Steyn GF, Kovács Z (2016) On the formation of non-radioactive
- copper during the production of ⁶⁴Cu via proton and deuteron-induced nuclear
- 902 reactions on enriched ⁶⁴Ni targets. J Radioanal Nucl Chem 307:1841-1846
- 903 78. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced
- nuclear reactions on enriched ⁶¹Ni and ⁶⁴Ni: possibility of production of no-carrier-
- added ⁶¹Cu and ⁶⁴Cu at a small cyclotron. Appl Radiat Isot 44:575-580
- 906 79. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler
- 907 CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity
- 908 ⁶⁴Cu using a biomedical cyclotron. Nucl Med Biol 24:35-43
- 909 80. Szajek LP, Meyer W, Plascjak P, Eckelman WC (2005) Semi-remote production of
- 910 [64Cu]CuCl₂ and preparation of high specific activity [64Cu]Cu-ATSM for PET
- 911 studies. Radiochim Acta 93:239-244
- 912 81. Avila-Rodriguez MA, Nye JA, Nickles RJ (2007) Simultaneous production of high
- specific activity ⁶⁴Cu and ⁶¹Co with 11.4 MeV protons on enriched ⁶⁴Ni nuclei.
- 914 Appl Radiat Isot 65:1115-1120
- 915 82. Sadeghi M, Amiri M, Roshanfarzad P, Avila M, Tenreiro C (2008) Radiochemical
- 916 studies relevant to the no-carrier-added production of ^{61,64}Cu at a cyclotron.
- 917 Radiochim Acta 96:399-402

- 918 83. Alliot C, Michel N, Bonraisin AC, Bosse V, Laize J, Bourdeau C, Mokili BM,
- Haddad F (2011) One step purification process for no-carrier-added ⁶⁴Cu produced
- 920 using enriched nickel target. Radiochim Acta 99:627-630
- 921 84. Watanabe S, Iida Y, Suzui N, Katabuchi T, Ishii S, Kawachi N, Hanaoka H,
- Watanabe S, Matsuhashi S, Endo K, Ishioka N (2009) Production of no-carrier-
- 923 added ⁶⁴Cu and applications to molecular imaging by PET and PETIS as a
- 924 biomedical tracer. J Radioanal Nucl Chem 280:199-205
- 925 85. Rajec P, Csiba V, Leporis M, Stefecka M, Pataky EL, Reich M, Ometakova J
- 926 (2010) Preparation and characterization of nickel targets for cyclotron production
- 927 of ⁶⁴Cu. J Radioanal Nucl Chem 286:665-670
- 928 86. Le VS, Howse J, Zaw M, Pellegrini P, Katsifis A, Greguric I, Weiner, R (2009)
- Alternative method for ⁶⁴Cu radioisotope production. Appl Radiat Isot 67:1324-
- 930 1331
- 931 87. Thisgaard H, Jensen M, Elema DR (2011) Medium to large scale radioisotope
- production for targeted radiotherapy using a small PET cyclotron. Appl Radiat Isot
- 933 69:1-7
- 934 88. Watanabe S, Watanabe S, Liang JX, Hanaoka H, Endo K, Ishioka NS (2009)
- Chelating ion-exchange methods for the preparation of no-carrier-added ⁶⁴Cu. Nucl
- 936 Med Biol 36:587-590
- 937 89. Dirks C, Scholten B, Happel S, Zulauf A, Bombard A, Jungclas H (2010)
- Characterisation of a Cu selective resin and its application to the production of ⁶⁴Cu.
- 939 J Radioanal Nucl Chem 286:671-674
- 940 90. Toyota T, Hanafusa T, Oda T, Koumura I, Sasaki T, Matsuura E, Kumon H, Yano
- T, Ono T (2013) A purification system for ⁶⁴Cu produced by a biomedical cyclotron
- for antibody PET imaging. J Radioanal Nucl Chem 298:295-300
- 943 91. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T,
- 244 Zhang MR (2016) Efficient preparation of high-quality ⁶⁴Cu for routine use. Nucl
- 945 Med Biol 43:685-691
- 946 92. Burke P, Golovko O, Clark JC, Aigbirhio FI (2010) An automated method for
- 947 regular productions of ⁶⁴Cu for PET radiopharmaceuticals. Inorg Chim Acta
- 948 363:1316-1319

- 949 93. Rebeles RA, Van den Winkel P, Hermanne A, De Vis L, Waegeneer R (2010) PC-
- ontrolled radiochemistry system for preparation of no-carrier-added ⁶⁴Cu. J
- 951 Radioanal Nucl Chem 286:655-659
- 952 94. Thieme S, Walther M, Pietzsch HJ, Henniger J, Preusche S, Mäding P, Steinbach J
- 953 (2012) Module-assisted preparation of ⁶⁴Cu with high specific activity. Appl Radiat
- 954 Isot 70:602-608
- 955 95. Kume M, Carey PC, Gaehle G, Madrid E, Voller T, Margenau W, Welch MJ, Lapi
- 956 SE (2012) Module-assisted preparation of ⁶⁴Cu with high specific activity. Appl
- 957 Radiat Isot 70:1803-1808
- 958 96. Elomaa VV, Jurttila J, Rajander J, Solin O (2014) Automation of ⁶⁴Cu production
- at Turku PET Centre. Appl Radiat Isot 89:74-78
- 960 97. Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017)
- Production of ⁶⁴Cu and ⁶⁸Ga with a medical cyclotron using liquid targets. Mod
- 962 Phys Letters 32: 1740013
- 963 98. Abbas K, Kozempel J, Bonardi M, Groppi F, Alfarano A, Holzwarth U, Simonelli
- F, Hofmann H, Horstmann W, Menapace E, Leseticky L, Gibson N (2006)
- Cyclotron production of ⁶⁴Cu by deuteron irradiation of ⁶⁴Zn. Appl Radiat Isot
- 966 64:1001-1005
- 967 99. Kozempel J, Abbas K, Simonelli F, Zampese M, Holzwarth U, Gibson N, Leseticky
- L (2007) A novel method for n.c.a. ⁶⁴Cu production by the ⁶⁴Zn(d,2p) ⁶⁴Cu reaction
- and dual ion-exchange column chromatography. Radiochim Acta 95:75-80
- 970 100. Smith SV, Waters DJ, Di Bartolo N (1996) Separation of ⁶⁴Cu from ⁶⁷Ga waste
- products using anion exchange and low acid aqueous/organic mixtures. Radiochim
- 972 Acta 75:65-68
- 973 101. Smith SV, Waters DJ, Di Bartolo NM, Hockings R (2003) Novel separation process
- for ultra pure and high specific activity ⁶⁴Cu. J Inorg Biochemistry 96:232
- 975 102. Szelecésnyi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG,
- van der Walt TN, Suzuki K, Mukai K (2005) Investigation of the ⁶⁶Zn(p,2pn) ⁶⁴Cu
- and ⁶⁸Zn(p,x)⁶⁴Cu nuclear processes up to 100 MeV: production of ⁶⁴Cu. Nucl
- 978 Instrum Methods B 240:625-637

- 979 103. Kim JH, Park H, Chun KS (2010) Effective separation method of ⁶⁴Cu from ⁶⁷Ga
- waste product with a solvent extraction and chromatography. Appl Radiat Isot
- 981 68:1623-1626
- 982 104. Smith NA, Bowers DL, Ehst DA (2012) The production, separation, and use of
- 983 ⁶⁷Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377-2383
- 984 105. Qaim SM (2012) The present and future of medical radionuclide production.
- 985 Radiochim Acta 100:635-651
- 986 106. Qaim SM (2015) Nuclear data for medical radionuclides. J Radioanal Nucl Chem
- 987 305:233-245
- 988 107. Qaim SM (2017) Nuclear data for production and medical application of
- 989 radionuclides: present status and future needs. Nucl Med Biol 44:31-49
- 990 108. Sato N, Tsukada K, Watanabe S, Ishioka NS, Kawabata M, Saeki H, Nagai Y, Kin
- T, Minato F, Iwamoto N, Iwamoto O (2014) First measurement of the radionuclide
- purity of the therapeutic isotope 67 Cu produced by 68 Zn(n,x) reaction using nat C(d,n)
- 993 neutrons. J Phys Soc Japan 83:073201
- 994 109. Sugo Y, Hashimoto K, Kawabata M, Saeki H, Sato S, Tsukada K, Nagai Y (2017)
- Application of ⁶⁷Cu produced by ⁶⁸Zn(n,n'p+d)⁶⁷Cu to biodistribution study in
- tumor-bearing mice. J Phys Soc Japan 86:023201
- 997 110. Marceau N, Kruck TPA, McConnell DB, Aspin N (1970) Production of ⁶⁷Cu from
- 998 natural zinc using a linear accelerator. Int J Appl Radiat.Isot 21:667-669
- 999 111. Yagi M, Kondo K (1978) Preparation of carrier-free ⁶⁷Cu by the ⁶⁸Zn(γ,p) reaction.
- 1000 Int J Appl Radiat Isot 29:757-759
- 1001 112. Danon Y, Block RC, Testa R, Moore H (2008) Medical isotope production using a
- 1002 60 MeV linear electron accelerator. Transactions of the American Nuclear Society
- 1003 98:894-895
- 1004 113. Ayzatsky NI, Dikiy NP, Dovbnya AN, Lyashko YV, Nikiforov VI, Tensihev AE,
- Torgovkin AV, Uvarov VL, Shramenko BI, Ehst D (2008) Features of ⁶⁷Cu
- photonuclear production. Probl Atom Sci Tech 49:174-178
- 1007 114. Aizatskyi NI, Dikiy NP, Dovbnya AN, Dolzhek MA, Lyashko YV, Medvedeva EP,
- Medvedev DV (2014) Photonuclear method of production of ⁶⁷Cu. Probl Atom Sci
- 1009 Tech 49:182-185

- 1010 115. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39-44
- 1012 116. Qaim SM, Tárkányi F Capote R (eds.) (2011) Nuclear Data for the Production of
- Therapeutic Radionuclides. IAEA Tech. Reports Series No. 473, Vienna, Austria,
- 1014 1-358
- 1015 117. Pupillo G, Sounalet T, Michel N, Mou L, Esposito J, Haddad F (2018) New
- production cross sections for the theranostic radionuclide ⁶⁷Cu. Nucl Instrum
- 1017 Methods B 415:41-47
- 1018 118. Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012)
- 1019 Preparation of ⁶⁷Cu via deuteron irradiation of ⁷⁰Zn. Radiochim Acta 100:419-423
- 1020 119. Skakun Y, Qaim SM (2004) Excitation function of the ⁶⁴Ni(α,p)⁶⁷Cu reaction for
- production of ⁶⁷Cu. Appl Radiat Isot 60:33-39
- 1022 120. Uddin MS, Kim K, Nadeem M, Sudár S, Kim G (2018) Measurements of excitation
- functions of alpha-particle induced reactions on ^{nat}Ni: possibility of production of
- the medical isotopes ⁶¹Cu and ⁶⁷Cu. Radiochim Acta 106:87-93
- 1025 121. Jamriska Sr DJ, Taylor WA, Ott MA, Heaton RC, Phillips DR, Fowler MM (1995)
- 1026 Activation rates and chemical recovery of ⁶⁷Cu produced with low-energy proton
- irradiation of enriched ⁷⁰Zn targets. J Radioanal Nucl Chem Articles 195:263-270
- 1028 122. Hilgers K, Stoll T, Skakun Y, Coenen HH, Qaim SM (2003) Cross section
- measurements of the nuclear reactions $^{\text{nat}}\text{Zn}(d,x)^{64}\text{Cu}$, $^{66}\text{Zn}(d,\alpha)^{64}\text{Cu}$ and
- 1030 ⁶⁸Zn(p,αn)⁶⁴Cufor production of ⁶⁴Cu and technical developments for small-scale
- production of ⁶⁷Cu via the ⁷⁰Zn(p,α)⁶⁷Cu process. Appl Radiat Isot 59:343-351
- 1032 123. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Zhang MR
- 1033 (2018) Small-scale production of 67 Cu for a preclinical study via the 64 Ni(α ,p) 67 Cu
- 1034 channel. Nucl Med Biol 59:56-60
- 1035 124. Dasgupta AK, Mausner LF, Srivastava SC (1991) A New separation procedure for
- 1036 ⁶⁷Cu from proton irradiated Zn. Appl Radiat Isot 42:371-376
- 1037 125. Schwarzbach R, Zimmermann K, Bläuenstein P, Smith A, Schubiger PA (1995)
- Development of a simple and selective separation of ⁶⁷Cu from irradiated zinc for
- use in antibody labelling: a comparison of methods. Appl Radiat Isot 46:329-336

- 1040 126. Stoll T, Kastleiner S, Shubin YN, Coenen HH, Qaim SM (2002) Excitation
- functions of proton induced reactions on ⁶⁸Zn from threshold up to 71 MeV, with
- special reference to the production of ⁶⁷Cu. Radiochim Acta 90:309-313
- 1043 127. Katabuchi T, Watanabe S, Ishioka NS, Iida Y, Hanaoka H, Endo K, Matsuhashi S
- 1044 (2008) Production of ⁶⁷Cu via the ⁶⁸Zn(p,2p)⁶⁷Cu reaction and recovery of ⁶⁸Zn
- target. J Radioanal Nucl Chem 277:467-470
- 1046 128. Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge
- 1047 CJ, Korach EM, Srivastava SC (2012) Development of a large scale production of
- 1048 ⁶⁷Cu from ⁶⁸Zn at the high energy proton accelerator: closing the ⁶⁸Zn cycle. Appl
- 1049 Radiat Isot 70:423-429
- 1050 129. Mastren T, Pen A, Loveless S, Marquez BV, Bollinger E, Marois B, Hubley N,
- Brown K, Morrissey DJ, Peaslee GF, Lapi SE (2015) Harvesting ⁶⁷Cu from the
- 1052 collection of a secondary beam cocktail at the national superconducting cyclotron
- laboratory. Anal Chem 87:10323-10329
- 1054 130. Horiguchi T, Noma H, Yoshizawa Y, Takemi H, Hasai H, Kiso Y (1980) Excitation
- functions of proton-induced nuclear reactions on ⁸⁵Rb. Int J Appl Radiat Isot
- 1056 31:141-151
- 1057 131. Kastleiner S, Qaim SM, Nortier FM, Blessing G, van der Walt TN, Coenen HH
- 1058 (2002) Excitation functions of ⁸⁵Rb(p,xn) ^{85m,g,83,82,81}Sr reactions up to 100 MeV:
- integral tests of cross section data, comparison of production routes of ⁸³Sr and
- thick target yield of ⁸²Sr. Appl Raidat Isot 56:685-695
- 1061 132. Tárkányi F, Qaim SM, Stöcklin G (1988) Excitation functions of ³He-particle
- induced nuclear reactions on enriched ⁸²Kr and ⁸³Kr. Radiochim Acta 43:185-189
- 1063 133. Blessing G, Tárkányi F, Qaim SM (1997) Production of ^{82m}Rb via the ⁸²Kr(p,n)-
- process on highly enriched ⁸²Kr: a remotely controlled compact system for
- irradiation, safe handling and recovery of the target gas and isolation of the
- radioactive product. Appl Radiat Isot 48:37-43
- 1067 134. Karelin YA, Efimov VN, Filimonov VT, Kuznetsov RA, Revyakin YL, Andreev
- OI, Zhemkov IY, Bukh VG, Lebedev VM, Spiridonov YN (2000) Radionuclide
- production using a fast flux reactor. Appl Radiat Isot 53:825-827

- 1070 135. Zhuikov BL (2014) Production of medical radionuclides in Russia: status and future-a review. Appl Radiat Isot 84:48-56
- 1072 136. Zaneb H, Hussain M, Amjed N, Qaim SM (2015) Nuclear model analysis of
- excitation functions of proton induced reactions on ⁸⁶Sr, ⁸⁸Sr and ^{nat}Zr: evaluation
- of production routes of ⁸⁶Y. Appl Radiat Isot 104:232-241
- 1075 137. Baimukhanova A, Radchenko V, Kozempel J, Marinova A, Brown V, Karandashev
- V, Karaivanov D, Schaffer P, Filosofov D (2018) Utilization of (p,4n) reaction for
- 1077 86 Zr- production with medium energy protons and development of a 86 Zr \rightarrow 86 Y
- radionuclide generator. J Radioanal Nucl Chem 316:191-199
- 1079 138. Lambrecht RM, Sajjad M, Qureshi MA, Alyanbawi SJ (1988) Production of ¹²⁴I. J
- Radioanal Nucl Chem Articles 127:143-150
- 1081 139. Braghirolli AMS, Waissmann W, da Silva JB, dos Santos GR (2014) Production of
- iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 90:138-148
- 1083 140. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2010) Evaluation
- of excitation functions of proton and deuteron induced reactions on enriched
- tellurium isotopes with special relevance to the production of iodine-124. Appl
- 1086 Radiat Isot 68:1760-1773
- 1087 141. Aslam MN, Sudár S, Hussain M, Malik AA, Qaim SM (2011) Evaluation of
- excitation functions of ³He- and alpha-particle induced reactions on antimony
- isotopes with special reference to the production of iodine-124. Appl Radiat Isot
- 1090 69:94-110
- 1091 142. Scholten B, Kovács Z, Tárkányi F, Qaim SM (1995) Excitation functions of
- 1092 ¹²⁴Te(p,xn) ^{123,124}I reactions from 6 MeV to 31 MeV with special reference to the
- production of ¹²⁴I at a small cyclotron. Appl Radiat Isot 46:255-259
- 1094 143. Hohn A, Nortier FM, Scholten B, van der Walt TN, Coenen HH, Qaim SM (2001)
- Excitation functions of ¹²⁵Te(p,xn)-reactions from their respective thresholds up to
- 1096 100 MeV with special reference to the production of ¹²⁴I. Appl Radiat Isot **55:**149-
- 1097 156
- 1098 144. Michael H, Rosezin H, Apelt H, Blessing G, Knieper J, Qaim SM (1981) Some
- technical improvements in the production of ¹²³I via the ¹²⁴Te(p,2n)¹²³I reaction at
- a compact cyclotron. Int J Appl Radiat Isot 32:581-587

- 1101 145. Sheh Y, Koziorowski J, Balatoni J, Lom C, Dahl JR, Finn RD (2000) Low energy
- cyclotron production and chemical separation of "no carrier added" iodine-124
- from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution
- target. Radiochim Acta 88:169-173
- 1105 146. Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S, Scholten
- B, Coenen HH (2003) Some optimisation studies relevant to the production of high-
- purity ¹²⁴I and ^{120g}I at a small-sized cyclotron. Appl Radiat Isot 58:69-78
- 1108 147. Glaser M, Mackay DB, Ranicar ASO, Waters SL, Brady F, Luthra SK (2004)
- Improved targetry and production of iodine-124 for PET studies. Radiochim Acta
- 1110 92:951-956
- 1111 148. Sajjad M, Bars E, Nabi HA (2006) Optimisation of ¹²⁴I production via ¹²⁴Te(p,n)¹²⁴I
- reaction. Appl Radiat Isot 64:965-970
- 1113 149. Nye JA, Avila-Rodriguez MA, Nickles RJ (2006) Production of [124] iodine on an
- 1114 11 MeV cyclotron. Radiochim Acta 94:213-216
- 1115 150. Nagatsu K, Fukada M, Minegishi K, Suzuki H, Fukumura T, Yamazaki H, Suzuki
- 1116 K (2011) Fully automated production of iodine-124 using a vertical beam. Appl
- 1117 Radiat Isot 69:146-157
- 1118 151. Mandal S, Mandal A, Lahiri S (2012) Separation of nca ^{123,124,125,126}I from alpha
- 1119 particle induced reactions on the natural antimony trioxide target. J Radioanal Nucl
- 1120 Chem 292:579-584
- 1121 152. Hassan KF, Spellerberg S, Scholten B, Saleh ZA, Qaim SM (2014) Development
- of an ion-exchange method for separation of radioiodine from tellurium and
- antimony and its application to the production of 124 I via the 121 Sb(α ,n)-process. J
- 1124 Radioanal Nucl Chem 302:689-694
- 1125 153. Uddin MS, Qaim SM, Hermanne A, Spahn I, Spellerberg S, Scholten B, Hossain
- SM, Coenen HH (2015) Ion-exchange separation of radioiodine and its application
- to production of ¹²⁴I by alpha particle induced reactions on antimony. Radiochim
- 1128 Acta 103:587-593
- 1129 154. Manual for Reactor Produced Radionuclides (2003) IAEA-TECDOC-1340,
- 1130 Vienna, 1-251

- 1131 155. Allen BJ, Blagojevic N (1996) Alpha- and beta-emitting radiolanthanides in
- targeted cancer therapy: the potential role of terbium-149. Nucl Med Comm 17:40-
- 1133 47
- 1134 156. Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP (2001) Production of
- terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot
- 1136 54:53-58
- 1137 157. Sarkar S, Allen BJ, Iman S, Gouzee G, Leigh J, Meriaty H (1997) Production and
- separation of terbium-149,152 for targeted cancer therapy. In: Second International
- 1139 Conference on Isotopes, Sydney, 104
- 1140 158. Müller C, Zhernosekov, K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt
- 1141 TN, Türler A, Schibli R (2012) A unique matched quadruplet of terbium
- radioisotopes for PET and SPECT and for α and β -radionuclide therapy: an in
- vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl
- 1144 Med 53: 1951-1959
- 1145 159. Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der
- Meulen NP (2016) Preclinical in vivo application of ¹⁵²Tb-DOTANOC: a
- radiolanthanide for PET imaging. Eur J Nucl Med Mol Imag Res 6:35-45
- 1148 160. Baum RP, Singh A, Benesova M, Vermeulen C, Gnesin S, Köster U, Johnston K,
- Müller D, Senftleben S, Kulkarni HR, Türler A, Schibli R, Prior JO, van der Meulen
- NP, Müller C (2017) Clinical evaluation of the radiolanthanide terbium-152: first-
- in-human PET/CT with Tb-152-DOTATOC. Dalton Transactions **46:**14638-14646
- 1152 161. Vermeulen C, Steyn GF, Szelecsényi F, Kovács Z, Suzuki K, Nagatsu K, Fukumura
- T, Hohn A, van der Walt TN (2012) Cross sections of proton-induced reactions on
- 1154 nat Gd with special emphasis on the production possibilities of ¹⁵²Tb and ¹⁵⁵Tb. Nucl
- 1155 Instrum Methods B 275:24-32
- 1156 162. Steyn GF, Vermeulen C, Szelecsenyi F, Kovacs Z, Hohn A, van der Meulen NP,
- Schibli R, van der Walt TN (2014) Cross sections of proton-induced reactions on
- 1158 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb
- radionuclides. Nucl Instrum Methods B 319:128-140

- 1160 163. Tárkányi F, Takács S, Ditrói F, Csikai J, Hermanne A, Ignatyuk AV (2014)
- 1161 Activation cross-sections of deuteron induced reactions on ^{nat}Gd up to 50 MeV.
- 1162 Appl Radiat Isot 83:25-35
- 1163 164. Tárkányi F, Ditrói F, Takács S, Hermanne A, Ignatyuk AV (2015) Extension of the
- energy range of the experimental activation cross sections data of longer lived
- products of proton induced nuclear reactions on dysprosium up to 65 MeV. Appl
- 1166 Radiat Isot 98:87-95
- 1167 165. Güray, RT, Özkan N, Yalcin C, Rauscher T, Gyürky G, Farkas J, Fülöp Z, Halász
- Z, Somorjai E (2015) Measurements of $^{152}Gd(p,\gamma)$ ^{153}Tb and $^{152}Gd(p,n)$ ^{152}Tb
- reaction cross sections for the astrophysical y process. Phys Rev C 91:055809
- 1170 166. Kovács Z, Szelecsényi F, Brezovcsik K (2016) Preparation of thin gadolinium
- samples via electrodeposition for excitation function studies. J Radioanal Nucl
- 1172 Chem 307:1861-1864
- 1173 167. Brezovcsik K, Kovács Z, Szelecsényi F (2018) Separation of radioactive terbium
- from massive Gd targets for medical use. J Radioanal Nucl Chem 316:775-780
- 1175 168. Kazakov AG, Aliev RA, Bodrov AY, Priselkova AB, Kalmykov SN (2018)
- Separation of radioisotopes of terbium from a europium target irradiated with 27
- MeV α-particles. Radiochim Acta 106:135-140
- 1178 169. Lahiri S, Nayak D, Das SK, Ramaswami A, Manohor SB, Das NR (1999)
- Separation of carrier free ^{152,153}Dy and ¹⁵¹⁻¹⁵³Tb from ¹⁶O irradiated CeO₂ by liquid-
- liquid extraction. J Radioanal Nucl Chem 241:201-206
- 1181 170. Nayak D, Lahiri S, Ramaswami A, Manohar SB, Das NR (1999) Separation of
- carrier free ^{151,152}Tb produced in ¹⁶O irradiated lanthanum oxide matrix. Appl
- 1183 Radiat Isot 58:631-636
- 1184 171. Beyer GJ, Comor JJ, Dakovic M, Soloviev D, Tamburella C, Hagebo E, Allen B,
- Dmitriev SN, Zaitseva NG, Starodub GY, Molokanova LG, Vranjes S, Miederer M
- 1186 (2002) Production routes of the alpha emitting ¹⁴⁹Tb for medical application.
- 1187 Radiochim Acta 90:247-252
- 1188 172. Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Künzi G, Hartley O,
- Senekowitsch-Schmidtke R, Soloviev D, Buchegger F (2004) Targeted alpha

- therapy in vivo: direct evidence for single cancer cell killing using ¹⁴⁹Tb-rituximab.
- Eur J Nucl Med Biol Imaging 31:547-554
- 1192 173. Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U,
- Schibli R, Türler A, Zhernosekov K (2011) The low-energy β⁻ and electron emitter
- 1194 ¹⁶¹Tb as an alternative to ¹⁷⁷Lu for targeted radionuclide therapy. Nucl Med Biol
- 1195 38:917-924
- 1196 174. Müller C, van der Meulen NP, Benesova M, Schibli R (2017) Therapeutic
- radiometals beyond ¹⁷⁷Lu and ⁹⁰Y: production and application of promising alpha-
- particle, β⁻-particle, and Auger electron emitters. J Nucl Med 58:91S-96S
- 1199 175. Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E (2016)
- 1200 Comparison between three promising β -emitting radionuclides, 67 Cu, 47 Sc and
- 1201 ¹⁶¹Tb, with emphasis on doses delivered to minimal residual disease. Theranostics
- 1202 6:1611-1618
- 1203 176. Jennewein M, Qaim SM, Kulkarni PV, Mason RP, Hermanne A, Rösch F (2005)
- A no-carrier-added ⁷²Se/⁷²As radionuclide generator based on solid phase
- 1205 extraction. Radiochim Acta 93:579-583
- 1206 177. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS,
- Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via
- 1208 natBr(p,x) induced by 100 MeV protons: steps towards a novel ⁷²Se/⁷²As generator
- 1209 system. Appl Radiat Isot 70:595-601
- 1210 178. Oláh Z, Szücs Z, Varga Z, Dóczi R (2015) Development of ⁷⁷Ge/⁷⁷As parent-
- daughter system for periodic removal of ⁷⁷As for environmental sanitation and
- biochemical purposes. Appl Radiat Isot 122:111-115

1214 Figures

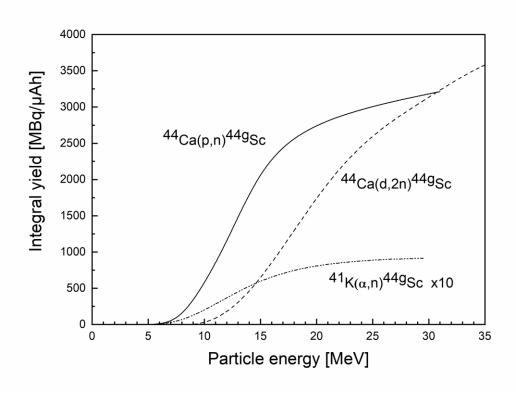


Fig. 1 Thick target yields of 44g Sc calculated from the excitation functions of 44 Ca(p,n) 44g Sc, 44 Ca(d,2n) 44g Sc and 41 K(α ,n) 44g Sc reactions reported in refs. [25, 26, 28, 30-32]. The values are shown as curves as a function of the particle energy.

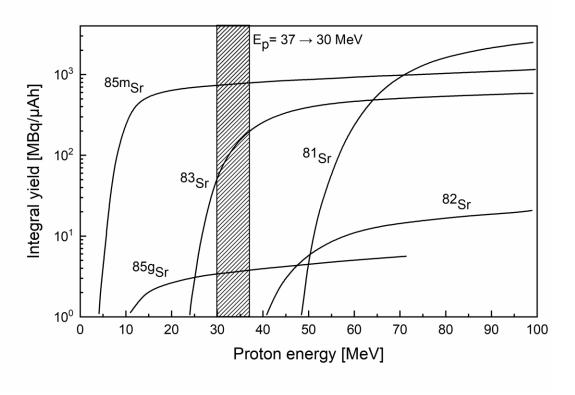


Fig 2. Calculated integral yields of radionuclides of Sr formed in the interaction of 85 Rb with protons of increasing energies. The optimum energy range for the production of 83 Sr is $E_p = 37 \rightarrow 30$ MeV (after Kastleiner et al. [131]).

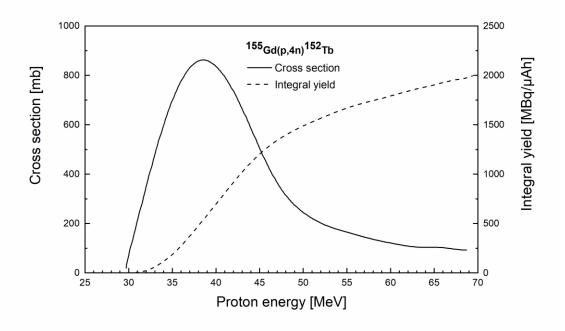


Fig 3. Excitation function of the ¹⁵⁵Gd(p,4n)¹⁵²Tb reaction and the calculated integral yield of ¹⁵²Tb assuming a 100 % enrichment of the target (adapted from Steyn et al. [162]).