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New developments in the production of theranostic

pairs of radionuclides

Syed M. Qaim*, Bernhard Scholten, Bernd Neumaier

Institut fir Neurowissenschaften und Medizin, INM-5: Nuklearchemie,
Forschungszentrum Julich, D-52425 Jilich, Germany

Abstract

A brief historical background of the development of the theranostic approach in nuclear
medicine is given and seven theranostic pairs of radionuclides, namely *49Sc/*'Sc,
S4Cu/®"Cu, 83Sr/0Sr, 80 [P0y 124]/131) 152Th/161T] and 12T/ **9Tb, are considered. The first
six pairs consist of a positron and a 3~-emitter whereas the seventh pair consists of a
positron and an a-particle emitter. The decay properties of all those radionuclides are
briefly mentioned and their production methodologies are discussed. The positron emitters
%4Cu, &Y and 21 are commonly produced in sufficient quantities via the (p,n) reaction on
the respective highly enriched target isotope. A clinical scale production of the positron
emitter *49Sc has been achieved via the generator route as well as via the (p,n) reaction, but
further development work is necessary. The positron emitters 83Sr and *>Tb are under
development. Among the therapeutic radionuclides, 8°Sr, *°Y and 31 are commercially
available and %1Th can also be produced in sufficient quantity at a nuclear reactor. Great
efforts are presently underway to produce #’Sc and ®’Cu via neutron, photon and charged
particle induced reactions. The radionuclide **°Tb is unique because it is an a-particle
emitter. The present method of production of **2Th and **°Tb involves the use of the
spallation process in combination with an on-line mass separator. The role of some

emerging irradiation facilities in the production of special radionuclides is discussed.
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Theranostic pair of radionuclides. Decay data. Cross section and excitation function.

Production methodology. Yield and purity. Specific activity.

1. Introduction

Radioactivity is unique in the sense that it can be routinely used in nuclear medicine both
for diagnosis and therapy [1]. Each application, however, demands a special type of
radionuclide, the choice being dependent on its decay properties. Thus, y-ray emitters like
9MT¢ (T, = 6.0 h), 2% (Tw, = 13.2 h) and 2°TI (T+ = 3.06 d), and positron emitters, like
1C (Ty, = 20.4 min), 8F (T = 109.6 min) and %®Ga (T = 1.13 h) are commonly used in
diagnostic studies utilizing Single Photon Emission Computed Tomography (SPECT) or
Positron Emission Tomography (PET), respectively. As regards internal radionuclide
therapy (endoradiotherapy), in general, radionuclides emitting low-range highly ionizing
radiation, i.e., a- or B~-particles, conversion and/or Auger electrons, are of great interest.
The major problem in internal radiotherapy, however, has been the quantification of
radiation dose caused to various organs, mainly due to uncertainties in the measurement of
radioactivity from outside the body of the patient. Although in the case of a few therapeutic
radionuclides, e. g., 131 (Ty, = 8.02 d) and ®Re (T = 17.0 h), y-scanning or SPECT has
been used to determine the radioactivity distribution in the body, the methodology lacks
precision. The uncertainty in radioactivity distribution is still higher for radionuclides
decaying by pure B~-emission, e.g., 32P (Twx = 14.3 d), 8°Sr (T+, = 50.5 d) and *°Y (T = 2.7

d), because imaging is usually done through the use of bremsstrahlung.

In the early 1990s, thoughts started developing in several laboratories to use a
SPECT radionuclide as a surrogate of a therapeutic radionuclide [2], e.g., *!In (T, = 2.8
d), a trivalent metal, as a surrogate of *°Y, another trivalent metal. There has also been
discussion about the use of several other metallic radionuclides [3]. However, none of those
approaches provided patient-individual quantitative data on radiation doses. In 1992, a few
researchers at the Forschungszentrum Julich, Germany, came to the idea of combining PET
and endoradiotherapy by using a pair of radionuclides of the same element, one emitting

positrons and the other B~ -particles. The choice fell on the pair &€Y/?Y. To this end, the
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B*-emitting radionuclide 8Y (Ty, = 14.7 h) was developed and produced in sufficient
guantity [4, 5] and it was applied together with the ~-emitting radionuclide *°Y (T = 2.7
d) in a tumour patient study [6]. That investigation is regarded today as the beginning of
the theranostic concept. The development of this concept has been recently described in
detail [7].

By administering to a specific patient a positron-emitting radioisotope of an
element together with a therapeutic radioisotope of the same element (which emits ~- or
a-particles, or low-energy Auger/conversion electrons), it is possible to measure the uptake
kinetics in an organ of the patient via PET imaging, thereby allowing an accurate
dosimetric calculation, which leads to quantification of therapy. This concept is now called
“theranostic approach” and it is finding increasing application. The methodology of using
“matched-pair” of radionuclides in patient care studies is known as ‘“personalized

medicine”.

There are several suitable or potentially suitable theranostic pairs of radionuclides,
e. g. ¥9Sc/*’Sc; 84Cu/f’Cu; %8Ga/’Ga, "2As/’'As; 83Sr/8Sr; 8y 0y 1109)n 11|y, 124)/13L ),
192Tp/*%1Th and ®2Th/*°Th. Some of them have already found application in clinical
research while the others are being developed. In recent years there is also an increasing
tendency to handle only one radionuclide as a theranostic agent, especially if it is readily
available. One example is 1/"9Lu. The dosimetry is based on y-ray spectrometry or SPECT
and the therapy effect is well known. However, in comparison to the PET technique,
SPECT is not quantitative, though in recent years high-quality SPECT systems have been
developed.

In this review we discuss seven rather established pairs of radionuclides where a

combination of PET and internal radiotherapy is involved. Their production methods are
described and the prospects of their availability on a clinical scale are considered.

2. Choice of radionuclides: decay data
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The decay properties of the seven pairs of radionuclides under consideration in this review
are given in Table 1. The major decay data were taken from refs. [8-10] and they represent
the commonly accepted values. Only in a few individual cases, e.g., %*Cu and 2*I, own
recently measured data [11] are given. The positron emission intensities for 83Sr, 8Y and
12T are rather uncertain.

The positron endpoint energy and the associated y-rays play important roles in PET
measurements. Whereas a high positron endpoint energy affects the resolution of a scan,
the y-rays present in the vicinity of the annihilation radiation may altogether distort the
image. From this point of view the positron emitter %Y is far from ideal, but it could be
used after many scattering corrections [12, 13]. There is some problem with 24l as well,
but the corrections needed are much smaller [12-14]. Somewhat similar result was obtained
with #49Sc [15]. The positron emitter *Cu is almost ideal for PET imaging because of its
low positron endpoint energy and almost no emitted y-ray, the abundance of the 1346 keV
y-ray being negligibly low. It has been therefore extensively used in PET studies related to
radioimmunotherapy. As far as the other two B*-emitters are concerned (i.e. 8Sr and
152Th), very few PET measurements have been reported. The radionuclide &Sr appears to
be promising because its positron endpoint energy is comparable to that of *49Sc. The
radionuclide *°2Tb has somewhat higher positron endpoint energy but since the associated
y-rays are not too many, it has been used in PET measurements after applying scattering
corrections similar to those in the case of 12*I. As regards therapeutic radionuclides, 8Sr
and %Y are pure B~-emitters. The radionuclide °Tb is an exotic a-emitter. The
radionuclides 4’Sc, 8'Cu, I and 'Th emit B~-particles with relatively low endpoint

energies and a few associated y-rays.

3. Production methodologies

The development of production methodology of a novel radionuclide involves work in
several directions, e.g., nuclear data, irradiation technology, chemical separation and
quality control of the product. We consider several of those aspects below for each

individual radionuclide. For a few radionuclides, some production details were recently
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Table 1. Major decay data® of the theranostic pairs of radionuclides

p*-emitting radionuclide

Therapeutic radionuclide

Radio- Tw

Mode of  Ep*(max) Main y-rays Radio- Tw Mode of Corpuscular Main y-rays
nuclide decay (keV) nuclide decay radiation
(%) Energy Intensity (%) Emax Energy Intensity
(keV) (%) (keV) (keV) (%)
43¢ 39h EC(5.7) 47Sc¢ 3.35d P (100) 610 159.4 68
B*(94.3) 1470 11570  99.9
84Cub)  12.7h EC (43.8) 67Cu  258d P (100) 577 184.6 48.6
B (17.8) 653
B (38.4) 571 1346.0 0.53
8Sr 324h EC(74) 89Sr  505d B (100) 1470
B* (26) 1274 762.7 30.0
381.6 19.6
8oy 147h  EC(67) 90y©) 27d P (100) 2290
B* (33) 2335 627.8 32.6
1076.7 82.5
1153.2 30.5
1241b) 418d EC(78) 602.7 61 134 8.02d B (100) 607 364.5 82
B (22) 2137 722.8 10 637.0 7.3
152Th 175h EC(82) ¥1Th  6.9d B (100) 590 74.6 9.8
B* (18) 2500 344.3 57 WTh  41h  «a(16.7) a: 5830
B* (4.3) 600 165.0 27.8
EC (79) 352.2 33.0

3 Data taken from Refs. [8-10], unless otherwise stated.

b) Decay data based partly on own measurement [11].

°) Obtained generally from a generator system.
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reported [16, 17]. For those radionuclides, therefore, the present review gives only some

updated information.

3.1 Theranostic pair 49Sc/*’Sc

The trivalent element scandium forms very useful metal complexes with many oxygen-
containing bifunctional chelators. This pair of radionuclides is therefore of great potential
value in theranostic investigations. Although the positron emitter “*Sc (Tw = 3.9 h) is also
very interesting and is presently attracting considerable attention, we limit our discussion

to #49Sc because it has been more thoroughly investigated.

Production of #49Sc
For the production of the positron emitter 449Sc in no-carrier-added form, two routes have

been investigated:

c
a) *Sc(p,2n)*Ti (60.4 a) =5 aage generator system

b) Direct production of 49Sc.

The first route involves the production of the long-lived parent *Ti at an intermediate
energy accelerator. The cross sections of the “°Sc(p,2n)*Ti nuclear reaction have been well
investigated [18, 19] and the energy range Ep= 35 — 15 MeV appears to be very suitable
for production purposes. The calculated thick target yield of “*Ti over this energy range
amounts to ~ 4 kBq uA* ht (for 1 h irradiation). Due to the long half-life of *4Ti, its
production is a rather difficult proposition. Although it was proposed a long time ago [20],
hitherto only a 185 MBq generator has been reported [21] and some post-elution
purification of #49Sc has been described [22]. In recent years, more effort has been devoted
to the separation of the parent **Ti via anion-exchange chromatography [23] and the
daughter #49Sc through cation-exchange chromatography [24]. The generator activity,
however, has still been limited to about 175 MBq. The separated 449Sc is free of #4MSc (T
=2.44d).
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The second route of production of #9Sc entails the utilization of either the
44Ca(p,n)*9Sc or the **Ca(d,2n)*9Sc reaction. The excitation functions of those reactions
have been measured [25-30]. A third reaction, namely “'K(o,n)*9Sc, is also possible. Its
cross sections have also been measured [26, 31, 32]. The thick target yields of #49Sc
calculated from the excitation functions are given in Fig. 1. The data for the (p,n) reaction
were taken from refs. [25, 26, 28] whereby the Levkovskii data [26] were reduced by a
factor of 0.82 [33]. The cross section data adopted for the (d,2n) reaction were from [30]
and those for the (a,n) reaction from refs. [26, 31, 32]. Evidently, the yield from the (p,n)
reaction is higher than that from the (d,2n) reaction up to about 30 MeV; thereafter the
(d,2n) reaction appears to give a higher yield. The yield from the (a,n) process is much
lower. In each case a highly enriched target is necessary to achieve clinically relevant yields
of 4495,

Several groups measured cross sections of a large number of charged particle induced
reactions in which #49Sc was formed as a subsidiary product. Furthermore, a few groups
investigated the production of 449Sc (together with other Sc isotopes) using "Ca as the
target material [cf. 34, 35]. The formation of *49Sc as a side product was also investigated
in studies primarily done on the formation of “*Sc in a-particle induced reactions on "K

and "44Ca [36-38]. All those studies are helpful in optimizing the production of 49Sc.

For clinical scale production of #49Sc, targets consisting of “*CaO (enrichment 95%)
and #*CaCOj3 (enrichment > 99%) have been used [27, 30, 39, 40]. Irradiations were done
with protons (Ep = 11 — 5 MeV) [27, 40] or deuterons (Eq = 16— 10 MeV) [30, 41] at beam
currents of up to 50 uA and 2uA, respectively. The separation of “49Sc and the recovery of
the target material were achieved through ion-exchange chromatography. By using the
(d,2n) reaction, a batch yield of about 50 MBq of 49Sc was achieved [41] but it could be
increased by increasing the beam current. In the case of the (p,n) reaction, on the other
hand, a batch yield of up to 2 GBq #*9Sc has been reported [40]. The product is of high
radiochemical purity and can be used immediately for preparing radiometal complexes.
The only drawback of the direct method of production of 49Sc is the associated longer
lived metastable state *“™Sc (T, = 2.44 d), amounting to < 1% and ~ 2.5% in the (p,n) and
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(d,2n) reactions, respectively [30]. On the other hand, this drawback is positively used in
some laboratories to prepare a so-called “in-vivo generator” [41]. The longer lived *™Sc
decays 100% by isomeric transition to *49Sc which can be measured via PET. Since the
spin of the *™Sc isomer is relatively high (6") as compared to that of *49Sc (2%), it was
predicted [42] that an a-particle induced reaction would lead to a higher yield of #™Sc.
This has been experimentally observed in the *?Ca(a,d)**™9Sc process [38]. The ratio of
44MSc to #49Sc increased to about 11% at E, = 29 MeV. On the other hand, the thick target
yields of both #4MSc and #49Sc in the a-particle induced reaction [38] are much lower than

those in the (p,n) and (d,2n) reactions discussed above.

In summary, both the direct and indirect methods of production of #49Sc are interesting,
but further development work is needed. A new aspect with regard to the direct production
is the development of a solution target for use at a medical cyclotron. By irradiating a
solution of "™'Ca(NOs), with 13 MeV protons, *49Sc was produced in quantities up to 28

MBq, sufficient for local radiochemical and possibly animal studies [43].

Production of 4’Sc

The production methods for the B~ -emitting therapeutic radionuclide 4’Sc in no-carrier-
added form have been under investigation for more than 40 years but in recent years, with
the developing concept of theranostic application, the efforts have been intensified. Since
in most cases Ti is used as a target material, a large number of radiochemical separation
methods for no-carrier-added #’Sc from products formed in the interaction of Ti with
neutrons, photons and charged particles have been developed [cf. 44-54]. Good summaries
of those methods have been given [49, 50]. Similarly, separation methods of #’Sc from an
irradiated Ca target have also been described [55-58].

A summary of the routes used to date for the production of #’Sc is given in Table 2. An
old but very successful method has been the 4'Ti(n,p)*'Sc reaction [45-52, 59-61]. The
cross section averaged for the fission neutron spectrum (ors) amounts to 20 + 2 mb [62].
By irradiating 200 mg of 94.5% enriched #'TiO; target in a high flux nuclear reactor for
about 3.6 days it was possible to obtain a batch yield of 1.6 GBq of #’Sc of high
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Table 2. Routes for production of #’Sc

Nuclear Target Cross section or Production related work  Separation  Purity Batch yield Other
process (enrichment) projectile energy yield (%) (%) GBq [Ref.] references
“Ti(n,p)*’Sc "ATiOy; oFs : 20 £ 2 mb* Irradiation in a high-flux > 97 >99.5 1.6 [49] [44-48,
“ITi0, (94.5 %) reactor; chemical processing 5?53]2]
®BTi(y,p)’Sc  *®Ti0,(99.1%)  Photons: 60 MeV | Irradiation in photon field: >90 > 05 11x107 [54]
"ATiO, Photons: 40 MeV - chemical processing (for 100 mg target)
186 x 1072 [54]
(for 3 g target)
8Ti0, (96.2 %)  Photons: 40 MeV Simulation; benchmarking [63]
*Ca(n,y)*'Ca 46Ca(NO3)2 oth: 0.7 £0.2 b Irradiation in a high-flux > 80 > 99 0.6 [58] [55, 57, 60]
B 4156 (31.7 %) l,:0.32+0.12b"  reactor; chemical processing (for 1 mg target)
®Ca(y.n)"Ca natCg Photons: 40 MeV  Simulation; benchmarking; [64, 65]
g yield measurement
N 47SC
“Ti(p,2p)*’Sc  “8Ti02 (98.5%) 48 < Ep < 150 MeV High-current proton > 90 Not < 11[48] [49, 60, 61]
irradiation; chemical accept-
processing able

* Value from A. Calamand, IAEA Technical Report-156 (1974) 273; (ors is fission neutron spectrum averaged cross section).
 Value from S.F. Mughabghab and D.l. Garber, BNL-325 (1973) 20-6; (ot is thermal cross section; lo is resonance integral).

10
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radionuclidic and chemical purity [49]. Higher yields are possible, if thicker targets would
be used. Other groups used "™TiO, as target material and the neutron flux was not very

high, so the resulting yield of 4’Sc was lower.

Another old method is the *®Ti(y,p)*'Sc reaction using high-energy photons [53]. In
recent years investigations on the formation of a few therapeutic radionuclides using highly
powerful accelerators (which deliver high-intensity, high-energy photons) have been
intensified. In a most recent work at the Argonne National Laboratory [54] a batch yield of
187 MBq of #'Sc has been achieved by using photons generated by an electron beam of 40
MeV (incident on a convertor) at a maximum power of about 3 kW. Further studies to

increase the yields are in progress in several laboratories [cf. 63].

A third method of 4’Sc production utilizes the decay of ’Ca (T = 4.54 d). The nuclear

process generally used is “®Ca(n,y)*'Ca P, a1ge [55, 57, 58, 60]. The method has two
limitations: a) the abundance of “°Ca in "Ca is only 0.004%, so that an enriched target is
absolutely necessary, which is very expensive, b) the cross section of the (n, y) reaction is
not high (see Table 2). Nonetheless, the methodology has been recently well developed by
using a 31.7% enriched *6Ca(NOs), target and irradiating it at the neutron high flux reactor
in Grenoble. The #'Sc activity was separated from calcium by column chromatography,
similar to the method developed for the separation of *4Sc from a #*Ca target (see above).
From a 1 mg “°Ca target, a batch yield of 600 MBq of #’Sc was obtained. A higher yield
could be achieved by increasing the amount of the target material. Besides the neutron
activation of *6Ca, the production of #’Ca is also being investigated via the *Ca(y,n) —route
[64, 65], especially in view of the increasing potential of high power electron linear
accelerators. Irradiations were done with photons obtained from a 40 MeV, 1 kW beam of
electrons on a convertor, and the radioactivity of the product ’Ca was assayed. Further

simulation, benchmarking and separation studies are continuing.
The production of #’Sc has been attempted using charged particles as well, particularly
via intermediate energy protons on "*Ti using the accelerator BLIP at Brookhaven National

Laboratory [48, 49, 61]. The #’Sc yields determined over the energy region 48 < E, < 150

11



245
246
247
248
249
250
251
252
253
254
255
256

257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Journal of Radioanalytical and Nuclear Chemistry

MeV were on the order of a few GBq. The level of other Sc isotopes, especially “6Sc,
however, was rather high. More recent studies in a few other laboratories are concentrating
on optimization of the energy range for production of this radionuclide. Two other methods
investigated for the production of #’Sc at the research level consist of the reactions
“Ca(a,p)*’Sc and “8Ca(p,2n)*'Sc. In the former case, using a 97.0% enriched “4CaCOs
target [37] high-purity 4’Sc was obtained in low yield which was, however, sufficient for a
preclinical study. In the latter case [66], only the (p,2n) reaction cross section was

measured.

Thus, in summary, considerable effort is presently being devoted to obtain high-quality
47Sc in quantities sufficient for medical applications. In particular the photon induced

reactions are receiving great attention.

3.2 Theranostic pair *Cu/®’Cu

The element copper has a versatile co-ordination chemistry. In the no-carrier-added form
copper radioisotopes are able to bind with biologically relevant small molecules as well as
with some antibodies and proteins. It is thus very suitable for preparing metal-chelates for
medical use [67, 68]. Two positron emitters of copper, namely 81Cu (Tx = 3.4 h) and %*Cu
(Tw = 12.7 h), have been used in PET studies. For theranostic applications, however, the
radionuclide %4Cu appears to be more suitable because of its longer half-life. We therefore

concentrated on this radionuclide.

Production of %Cu

Several routes have been investigated for the production of no-carrier-added %Cu. The
oldest among them is the 84Zn(n,p)®*Cu reaction in a nuclear reactor (for a brief summary
see [69-71]). The fission neutron spectrum averaged cross section (ops) amounts to 31 +
2.3 mb [62] and sufficient quantities of ®*Cu could be produced in a medium to high-flux
reactor. The purity of the product achieved, however, did not meet the stringent demands
for medical applications. In recent years some further efforts have been made to produce
better quality 54Cu via the above reaction in a nuclear reactor [70, 71], in particular by using

12
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99.4% enriched %4Zn0 as target material in a thermal neutron shielded sample holder and
efficient separation methods for radiocopper [71]. Furthermore, accelerator produced
neutrons have also been used, e. g. d(Be) break up neutrons [72] or 14 MeV neutrons [73].
In the latter two cases the (n,p) reaction cross section is higher. However, due to low

neutron fluxes the yield of ®*Cu was low.

The emphasis regarding the production of 5“Cu got shifted over the last several years
from a reactor to a cyclotron. Proton and deuteron induced reactions on several target
isotopes, especially the reactions ®Ni(p,n)®Cu, ©®*Ni(d,2n)%Cu, %8Zn(p,on)®Cu,
%6Zn(p,2pn)®Cu, *zn(d,2p)®*Cu and %6Zn(d,o)®*Cu were investigated till 2009 over a wide
energy range of up to 80 MeV using highly enriched target isotopes, with the aim of
obtaining data for the production of ®*Cu. Based on a critical analysis of the published
nuclear reaction cross section data, Aslam et al. [74] presented a comparison of the various
production reactions of 8Cu and came to the conclusion that the 8Ni(p,n)®*Cu reaction
over the energy range of E, = 12 — 8 MeV would be the best choice. The calculated thick
target yield amounts to 304 MBq pA™ h't (for 1h irradiation) and no radionuclidic impurity
occurs. In recent years some further measurements near the threshold of the ®Ni(p,n)®*Cu
reaction have been carried out [75] and the reaction %’ Zn(p,o)®*Cu has also been studied
[76]. Furthermore, in connection with the specific activity of 5*Cu, the formation of non-
radioactive copper during the production of ®*Cu via proton and deuteron-induced reactions
on enriched %Ni has also been considered [77]. The nuclear process %Ni(p,n)®*Cu,
developed at the Forschungszentrum Jilich [78], has now become the standard procedure
for the production of %*Cu. The major features were the preparation of a target via
electrodeposition of ®*Ni on a Au backing, a clean separation of ®*Cu via ion-exchange
chromatography, and an efficient recovery of the enriched target material. The technology
was further developed in some laboratories [79-81] and batch yields of up to 40 GBq of
%4Cu were achieved. Several other optimization studies have also been performed [82-87].
Many small hospital-based laboratories are now producing this radionuclide in amounts
sufficient for local use. A few newer developments are related to more efficient chemical
separation and purification of Cu [88-91]. There has been some emphasis on automation
of the production procedure as well [92-96]. Thus, considerable interest has been aroused

13
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in recent years in the production of 84Cu via this route. Due to the increasing demand for
this radionuclide, on one hand solution targets similar to those for *9Sc mentioned above
are being developed [97] and, on the other, a commercialization of the process is being
pursued. However, it should be mentioned that small amounts of ®Cu have also been
produced via the nuclear processes %Zn(d,2p)®*Cu [98, 99] and ®Zn(p,an)®*Cu [100-103],

the latter partly as a by-product in the production of 6’Ga via the %8Zn(p,2n)®’Ga reaction.

Production of ¢’Cu

The production of the therapeutic radionuclide ¢’Cu (T = 2.58 d) in no-carrier-added form
has also been under consideration for more than 40 years and the knowledge available till
2011 was critically reviewed [104]. A few other later reviews dealt with the newer

information [17, 105-107]. In this work therefore only some salient features are mentioned.

Similar to %Cu, the production of ®’Cu in neutron induced reactions, especially in a
nuclear reactor via the ’Zn(n,p)®’Cu reaction (ozg = 1.07 + 0.04 mb) has received some
new attention [69, 71], in particular by using 93% enriched %"ZnO as target material [71].
The same threshold reaction has also been investigated with 14 MeV neutrons; however,
by using a "*ZnO target [73]. A yet another method making use of the %8Zn(n,np)®’Cu
reaction induced by fast neutrons, generated by breakup of 40 MeV deuterons on a graphite
target, has also been utilized [108]. In those two works [73, 108] the fundamental
separation and purification procedures were established. The ¢'Cu obtained via the latter
process using a 99.29% enriched %8Zn0O target was shown to be suitable for preclinical
studies [109]. For large scale production, however, further development work using high

neutron fluxes is needed.

Another reaction which has been under investigation for a long time is the
%87Zn(y,p)®’Cu process. In one early study "*Zn was used as target material [110] and in
another 98.97% enriched %8Zn0O was employed [111]. In both cases chemical separation of
the product ’Cu was carried out. The batch yield achieved was up to 185 MBq but the
chemical purity would not meet the standard required today. With the increasing

significance of ®’Cu combined with the development of powerful electron accelerators, in
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recent years the efforts to utilize the ®Zn(y,p)®’Cu reaction for 8’Cu production have been
intensified [64, 112-115]. Production yields of ®’Cu have been measured experimentally
and compared with theoretically calculated values [112, 113], extensive purification
methodology was developed [114], simulation studies were performed and predicted
activities were verified with experimental data [64, 115]. The yield of ®’Cu achieved
amounts to about 1 MBq g* kW hl. Thus, tens of MBq of 6’Cu can easily be produced.
It is expected that with further intensification of technological efforts to develop high-
intensity accelerators (possibly up to 100 KW power), it should be possible to produce ®’Cu

in GBq quantities.

In addition to the neutron and photon induced reactions described above for the
production of ®’Cu, considerable effort has been invested over the years to make use of
charged-particle induced reactions as well. The four nuclear processes investigated are
listed in Table 3. The suitable energy ranges and the calculated thick target yields are based
on evaluated excitation functions [116] and a few other measurements. However, it should
be mentioned that a new measurement on the ®Zn(p,2p)®’Cu reaction [117] gives cross
section values which are lower than the evaluated data up to 60 MeV by about 10%. If
those values are accepted, the calculated yield of ¢’Cu would decrease slightly. The yield
values for the "°Zn(d,on)®’Cu and %Ni(a,p)®’Cu reactions given in Table 3 were derived
from individual experimental cross section curves, for the former reaction from ref. [118]
and for the latter from refs. [119,120].

As far as the practical production of ®’Cu is concerned, in the case of the "°Zn(p,a)®’Cu
reaction two studies were performed, one using a 99.7% enriched °ZnO target [121] and
the other using a 70% enriched "°Zn electroplated target [122]. The separation yields were
comparable but, as understandable, the radionuclidic purity of ®’Cu achieved was higher in
the first study due to the higher enrichment of the target. The batch yield of *’Cu obtained

via this production route was, however, quite low. With
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Table 3. Charged-particle induced nuclear reactions used for the production of ¢’Cu.

Nuclear Energy Calculated thick Target Production related work Separation Radionuclidic Batch yield
reaction range target yield (enrichment) yield purity MBq
(MeV) (MBg/HAR) (%) (%) [Ref.]
Zn(p,a)Cu 18 — 12 2.2 9Zn0 (99.7 %) Irradiation at 4 pA; anion- > 80 >99 0.8 [121]
exchange separation for 10 mg target
707n electroplated Irradia'gion at 20 HA; solvent > 80 > 85 14 [122]
(70 %) extraction and anion-exchange
separation
0Zn(d,na)®’Cu 20 — 10 4.2 9Zn metal Low current irradiation of thin >90 >90 0.95[118]
(95.35 %) target; consective cation- and
anion-exchange separation
8Zn(p,2p)¢’Cu 70 — 30 30 %8Zn0 (99.0 %) Irradiation at 3 pA; ion- 83 > 97 117 [127]
exchange chromatography
%7n0 (99.7 %)  Irradiationat 100 uA; > 92 mixture of 1.6 x 103
extensive chemical processing 84cy and 6’Cy? [128]
®4Ni(a,p)®’Cu 35— 10 0.8 ®4Ni electroplated Irradiation at 15 pA; cation- >90 > 75 55 [123]

(99.07 %)

exchange separation

8 Using an incident proton beam of 92 MeV.



366 regard to the "°Zn(d,an)®’Cu reaction, the production test involved only low current
367 irradiation of a very thin target and so the batch yield achieved was very low [118]. There
368 s the possibility to produce larger quantities of 6’Cu if thicker targets are used. The reaction
369  5Ni(a,p)®’Cu also leads to a
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relatively low yield of ®’Cu because of the low cross section and the low range of a-
particles. Nonetheless, a suitable target was prepared and, after a 7 hour irradiation with 36
MeV a-particles at 15 pA, followed by chemical separation, a total of 55 MBq of ¢’Cu was
achieved [123]. The product was chemically very pure and was used in preclinical studies
[123]. The level of %Cu impurity was, however, somewhat high.

In contrast to the above mentioned three low vyield processes, the reaction
%8Zn(p,2p)®’Cu at intermediate energies leads to a much higher yield. It has therefore been
receiving more attention. It was originally utilized for production of 6’Cu by irradiation
with protons of energies about 180 MeV followed by chemical separation [48, 61, 124].
The yield was very high but the specific activity was low. Later investigations concentrated
more over the energy region up to 70 MeV, utilizing highly enriched ®8Zn as target material
and extensive chemical processing [125-127]. Further extensive work has recently been
reported using about 100 MeV protons [128]. The suggested production energy range is,
however, Ep, = 70 — 30 MeV [105]; at higher energies a considerable amount of inactive
%5Cu is formed via the ®Zn(p,2p2n)®Cu reaction which decreases the specific activity of
®7Cu. Using an incident proton energy of about 92 MeV, batch yields of a few GBq of ®’Cu
have been achieved at BNL. However, the product contains about 5 times more ®4Cu than
%7Cu. Thus further optimization work utilizing lower proton energies is needed. A further
newer approach is to harvest ’Cu from the cooling loop of the Facility for Rare Isotopes
(FRIB) presently under construction; some preliminary results have been obtained by
analysis of a few samples from the aqueous beam stop at the National Superconducting
Cyclotron Laboratory (NSCL) [129].

From the above discussion it is obvious that the development of production methods of
®’Cu is of great timely interest because it is one of the most important theranostic

radionuclides. Diversified efforts are underway to obtain it in sufficient quantity and good

quality for medical applications.

3.3 Theranostic pair 8Sr/%Sr
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Strontium is an important bone seeking element. The radionuclides of strontium could
therefore be used in diagnostic and therapeutic studies related to bone. The $~-emitting
893r (T4, = 50.5 d) is one of the earliest known radionuclides to cure metastases in bone. It
also finds application in palliation studies. The B*-emitting analogue 83Sr (T, = 32.4 h)
should be suitable for theranostic application. As far as we know, to date no PET
measurement has been reported using Sr; yet its decay properties suggest that it is

potentially suitable.

Production of 83Sr

Regarding the production of no-carrier-added 83Sr, excitation functions were measured for
the 85Rb(p,xn)®#°Sr processes up to 100 MeV [130, 131] and 82Kr(*He,xn)®83Sr reactions
up to 36 MeV [132]. Therefrom the suitable energy ranges for the production of 83Sr via
those two processes were deduced. The calculated thick target yields of the radionuclides
formed in the interactions of protons with ®Rb are [131] shown in Fig. 2. The optimum
energy range for the production of 8Sris E, = 37 — 30 MeV, whereby the yield of &Sr
amounts to 160 MBq uA™* h! (for 1 h irradiation) and the levels of the two long-lived
impurities 8Sr (T% = 64.9 d) and #Sr (T% = 25.3 d) are 0.24% and 0.04%, respectively.
A similar analysis for the *He-particle induced reactions on 82Kr showed that the optimum
energy range for the production of 8Sr is Esne = 18 — 10 MeV, whereby the yield of 83Sr
amounts to 5.1 MBq uA™* ht (for 1 h irradiation) and the level of the only impurity 82Sr is
0.20%. The method of choice for the production of &Sr is thus the ®Rb(p,3n)-reaction,
although the availability of 40 MeV protons is often a problem.

Irradiations of several targets with low beam currents of 40 MeV protons and 18
MeV *He-particles were carried out to measure experimental thick target yields. In the
former case, pressed ®RbCl pellets absorbing about 5 MeV of the proton beam were used
and, in the latter, 82Kr gas absorbing about 8 MeV of the 3He-particle energy was irradiated
in a special target system [133]. Highly efficient separation methods, using high
performance liquid chromatography, were developed to obtain radiostrontium of high
quality [131]. The results were compared with the theoretical data. The radionuclide &3Sr

was obtained in quantities of up to 20 MBq via the (p,3n) process and up to 5 MBq via the
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(®He,2n) reaction [131]. A clinical scale production was, however, not demonstrated.
Nevertheless, it should be possible to obtain Sr in quantities sufficient for medical
application by using the technology developed for the production of 82Sr (parent of 82Sr/
82Rb generator system), except that the proton energy incident on the 8°RbCl target should
be 40 MeV instead of 70 MeV used in the 82Sr production.

Production of 8°Sr

As far as the production of the therapeutic radionuclide 8°Sr is concerned, some use has
been made of the 88Sr(n,y)®°Sr reaction. However, due to the very low specific activity, the
product 89SrCl, has been used only in palliative therapy of malignant metastases to the
skeleton. For preparation of radiopharmaceuticals with high specific activity, a production
route involving the neutron threshold reaction %Y (n,p)® Sr has been developed. The cross
section averaged for the fission neutron spectrum is low (ozs = 0.31+ 0.06 mb [62]);
therefore long irradiations are needed. The target material consisting of Y203 powder,
pressed to a pellet, is placed in an Al capsule. The irradiation is done for several weeks at
a high fast neutron flux of 1-2 x10*> n cm s1. Thereafter the chemical processing starts
by dissolving the irradiated target in HNOs and extracting the bulk of yttrium in
tributylphosphate. The purification of 8°Sr is done by incorporating several cation-
exchange chromatographic steps. The finally purified product is then obtained as 8°SrCl,
in dilute HCI in a batch yield of about 20 GBq. Large quantities of this radionuclide are
produced mainly at the reactor RIAR in Dimitovgrad, Russia [134, 135]. It is then shipped

to various parts of the world.

3.4 Theranostic pair 8Y/*0Y

As mentioned in the introduction, this was the first pair of radionuclides used for
theranostic studies. Its development has been described in detail in a recent publication [7].

In this article therefore only a very brief account is given.

For the production of the positron emitter 8Y (T, = 14.7 h), the nuclear reactions
8Sr(p,n)®Y, 88Sr(p,3n)8eY, "Zr(p,x)%®Y and "Rb(®*He,xn)®®Y were investigated (for
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references see [136]). Very recently the nuclear process Y (p,4n)%zr N Y has also
been reported [137]. The method of choice for production of %Y, however, is the
8Sr(p,n)®Y reaction on a highly enriched target, originally reported by the Jiilich group
[5, 6]. Over the optimum energy range of Ep = 14 — 7 MeV the expected thick target yield
of 88Y amounts to 371 MBq pA™ ht (for 1 h irradiation). Although an evaluation revealed
discrepancy in nuclear data [136], the production technology has been well developed. For
irradiation mostly solid 97% enriched 8SrCOs target is used at a proton beam current of
about 10 pA. For the chemical separation of radioyttrium, two methods have been
advantageously used:

a) Co-precipitation with La(OH)s, followed by cation-exchange chromatography,

b) Electrolytic removal of radioyttrium.

A detailed discussion of the separation procedures is given in ref. [7]. Batch yields of a few
GBq of 2¢Y have been reported. At a few medical cyclotrons, solution targets have been
developed to produce small quantities of ®Y for local use. The radionuclidic purity of 8Y
amounts to > 97%; the major impurity 8’™Y originates from the small amount of the isotope
87Sr present in the enriched ®Sr target. Due to great demand for this radionuclide, efforts

are underway to commercialize its production.

As regards the production of the ~-emitter Y (Tw, = 2.7 d), it could be done via
the 89Y(n,y)®Y process, but the specific activity is very low. No-carrier-added *°Y is
therefore generally obtained via the ®Sr/*°Y generator system. The parent activity %Sr (T
= 28.6 a) is separated from the fission products and fixed on a generator column. The
daughter Y is eluted about once a week using 2N HCI as eluent. About 3-5 GBq quantities
of °%Y are collected in 0.5 mL of the eluent. Such generator systems are commercially

available.

3.5 Theranostic pair 241/33]

This is a unique pair of radionuclides. In contrast to the four metallic pairs discussed above,

namely #49Sc/*’Sc, 84Cu/®’Cu, 8Sr/%Sr and %Y/*%Y, this pair belongs to the group of
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halogens which form a rather strong covalent bond and have therefore been frequently
applied following the “analogue® approach. A large number of radiopharmaceuticals have
been developed using halogens. Thus, both 24 and 31 find applications both individually
and collectively as a theranostic pair.

The therapeutic use of 311 has been successfully practised for more than 70 years,
especially in treatment of thyroid diseases. The use of 124l is relatively new. It was first
proposed in 1988 by Lambrecht et al. [138]. Since then extensive studies on its production
and preparation of radiopharmaceuticals have been performed. Today it is widely used in

tumour targeting as well as in thyroid dosimetry.

The various methods investigated for the production of 1241 (T, = 4.18 d) have been
extensively reviewed [139]. A critical analysis of the cross section data was performed
[140, 141]. A summary of the results was given [106]. It was concluded that the
124Te(p,n) 1 reaction, originally suggested by Scholten et al. [142] is the method of choice
for the production of 1. For a 99.8% enriched %*Te target over the energy range E, = 12
— 8 MeV the expected 2%l yield is 16 MBq uA™ h't (for 1h irradiation). This yield is not
very high, but the product obtained is of the highest radionuclidic purity, the level of the
associated long-lived %1 (T, = 60.0 d) impurity being < 0.1%. On the other hand, it is felt
that the 12°Te(p,2n)'?*1 reaction [143] over the energy range E, = 21 — 15 MeV may also
be quite useful; the yield of *2*1 is 5 times higher than that via the (p,n) reaction and the
level of the '2°I Impurity is < 1%. Today, for clinical scale production of 121, the
124Te(p,n)'1 reaction is almost universally applied and batch yields of a few GBq are
obtained. The procedure commonly involves irradiation of a ?4TeO, target and removal of
radioiodine by a distillation process at about 750 °C [144-150]. A detailed review of the
distillation parameters used by various groups was presented [139]. Radioiodine is
generally collected almost quantitatively in 0.3 mL of 0.02 M NaOH solution. Its
radiochemical form is checked by high performance liquid chromatography (HPLC); it is
> 98% iodide which is very suitable for subsequent synthesis steps. The enriched target

material is regenerated (without any substantial loss) for reuse.
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In recent years the separation of radioiodine from «a-particle irradiated antimony
was also investigated using solvent extraction and ion-chromatographic techniques [151-
153]. The radionuclidic purity of the product achieved was quite high. However, due to the

low batch yield of 1241, those methods have not found much practical application.

As far as the production of 31 (Tw, = 8.02 d) is concerned, the methodology is well

established [cf. 154]. It is a reactor radionuclide and is produced either via the fission

- . : B~
process (as a subsidiary of ®*Mo production) or via the route **Te(n,y)**'™9Te — B!, In
the latter case, both dry and wet distillation methods have been used for the separation of

radioiodine. Large quantities of 13! are commercially available.

3.6 Theranostic pairs ®2Tb/*®1Tb and *?Th/**°Tb

These two pairs of radionuclides are rather exotic but very promising. In recent years there
has been an increasing interest in the application of radiolanthanides in imaging and
therapy, especially because a trivalent lanthanide forms stable complexes with many
oxygen-containing bifunctional chelators. The imaging is generally done by SPECT which,
however, is not quantitative. The radionuclide **2Tb (Tw = 17.5 h) is the only suitable p*-
emitter in the region of lanthanides which has been successfully developed for PET
measurements. It can thus serve as an exact diagnostic match to the ~-emitting therapeutic
radionuclide *1Th (T, = 6.9 d) as well as to the a-particle emitting therapeutic radionuclide
149Th (Tw = 4.1 h), whose potential in therapy was first suggested by Allen and Blagojevic
[155]. In fact these three radionuclides together with the Auger electron emitter Thb (T
= 5.3 d) make the element terbium very versatile for medical applications, somewhat

similar to copper and iodine.

Development of *2Th and *°Thb

Work on the development of the B*-emitter 1°2Tb and the a-particle emitter 14°Th has been
going on for quite some time and two rather uncommon reactions have been investigated

for their production.
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a)

b)

Heavy-ion induced reactions, first studied in Sydney [156,157]. Using a natural Nd
target, 12Dy was produced over the energy range of 80 to 110 MeV. The contributing
reactions were #2Nd(*?C,2n)®?2Dy, *Nd(*?C,3n)*?Dy, *Nd(*?C,4n)*?Dy and
Nd(*2C, 5n)152Dy. The product **°Dy decays with a half-life of 2.4 h to 12Tb. After
irradiation the thick Nd metal target was therefore allowed to decay for about 12 hours,
thereafter it was dissolved in 6 M HNO3 evaporated to dryness and the residue
redissolved in a-hydroxyisobutyric acid (a-HIBA). The separation of no-carrier added
152Th was then achieved through cation-exchange chromatography. The batch yield of
152Th amounted to a few MBq. It was sufficient for tracer studies but not for a PET
phantom measurement. In the same Nd target irradiated with *2C ions, the a-particle
emitting 14°Th was formed via the *2Nd(*?C, 5n)**Dy — %°Tb process. Its batch yield

amounted to a few MBq [157].

Spallation reaction, first studied at CERN [156]. A tantalum foil was irradiated with
1000 MeV protons. The spallation products were released from the target at 2400 °C.
The ionized products were separated electromagnetically at the ISOLDE facility. The
spallation products of mass number 152 were collected and subjected to a two-step
separation procedure, similar to the one used in the separation of 8®Y [5], viz. at first
coprecipitation of radioterbium with La(OH)s, then removal of radioterbium from
lanthanum by cation-exchange chromatography. The batch yield of *2Tb amounted to
770 MBq [156]. A PET phantom measurement demonstrated the feasibility of using
152Th for monitoring the behavior of therapeutic terbium radionuclides [156].

Following the successful production of '%2Tb via the spallation process, several

optimization studies and further development work were carried out, in particular with

regard to on-line mass separation [158, 159]. To demonstrate the utility of *2Th, a proof

of concept study was performed with 52Tb-labelled folate in a mouse bearing folate

receptor (FR)-positive tumours [158]. A more detailed in vivo imaging study using several

other *2Tb-labelled compounds showed the potential of this radionuclide for PET studies

[159]. Very recently the first application of this positron emitter in human PET/CT has
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been convincingly demonstrated [160]. The significance of this radionuclide is thus

increasing.

Besides the application of the spallation process to the production of ®2Tb, many
investigations on other possible production reactions have also been carried out. They deal
either with cross section measurements of proton and deuteron induced reactions on
gadolinium and dysprosium [161-166] or with chemical separation of radioterbium from
gadolinium irradiated with protons [167], europium irradiated with a-particles [168] or
lanthanum and cerium irradiated with °O-ions [169, 170]. The (p,xn) reactions on
gadolinium isotopes in the intermediate energy range appear to be promising. An example
is given in Fig. 3, which has been adapted from the data of Steyn et al. [162]. The cross
section of the *°Gd(p,4n)*>?Th reaction is fairly high and over the energy range of E, =
50— 30 MeV, the calculated yield of **2Tb amounts to about 1.45 GBq uA™ ht (for 1 h
irradiation). Thus using an enriched *°°Gd target, in principle, it should be possible to

produce °2Th in quantities sufficient for medical applications.

With regard to the production of the therapeutic radionuclides of terbium, the case of
the o-particle emitter °Th has been mentioned above. Its production in tracer quantities
via the heavy-ion induced reaction was reported [157]. Subsequently, Beyer et al. [171,
172] produced this radionuclide on a clinical scale via spallation of tantalum with 1400
MeV protons in conjunction with on-line isotope separation at CERN, and demonstrated
direct evidence for single cancer cell killing using ***Thb-rituximab. In general, however,
the availability of this radionuclide is rare. On the other hand the cross sections of a few
(p,xn) reactions on a few gadolinium isotopes, leading to the formation of 2*°Th, have been
described [162]. They appear to be interesting for production purposes but specific

production methodology needs to be developed.

Production of 161 Th

The production of the B~-emitting therapeutic radionuclide *'Tb is usually done in a

. B~ .
nuclear reactor via the sequence **°Gd(n,y)'%*Gd — 1Th. In general, an enriched *°Gd

target is irradiated with a high neutron flux and separation of *61Tb from the gadolinium
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target is done by cation-exchange chromatography with a-HIBA, followed by
concentration of 61T solution [158, 173, 174], There is, however, some difficulty in the
production process. The intermediate nuclide *1Gd (T = 3.7 min) has a very high neutron
capture cross section (o ~ 20000 b) so that the formation of 1 Tb through the B~-decay
of 1%1Gd is in strong competition with the formation of 1%2Gd through the (n,y) reaction. A
short irradiation with a high neutron flux is advantageous. In general, the radionuclide ' Tb

could be made available in sufficient quantities.

4. Concluding remarks

The theranostic approach in nuclear medicine, i.e. administering to a specific person two
radionuclides of the same element in the same chemical form, one emitting positrons and
the other highly-ionizing low-range radiation to cause therapeutic effect, is gaining
increasing significance because it constitutes “personalized medicine”. In this review seven
such pairs have been dealt with and their production methods have been discussed. The
positron emitters ®*Cu, %Y and %I are well characterized and the respective production
technology using the (p,n) reaction on the respective highly enriched target isotope is well
developed. The positron emitter 449Sc is presently attracting great attention. Though its
clinical scale production has been achieved via two routes, namely the **Ti/**9Sc generator
system and the direct production via the (p,n) reaction, further development work is
necessary to ensure its large scale production. The basic methodology for production of the
positron emitter 83Sr has also been demonstrated but due to the need of an intermediate
energy cyclotron, not much progress has been made with regard to its production on a
clinical scale. The positron emitter °2Th is potentially very interesting. The production
methodology developed so far, however, is rather exotic because it makes use of the
spallation process in combination with on-line mass separation. Attempts are presently
underway to produce it at an intermediate energy cyclotron/accelerator. All those positron
emitters have either been shown to be, or are expected to be, suitable for PET
measurements; only in the case of 8°Y the large number of associated y-rays cause some

difficulty, but after proper corrections, the images can be satisfactorily interpreted.
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Regarding the therapeutic radionuclides, 8Sr and *°Y decay by emission of B~-
particles of intermediate energy. Both are produced in a nuclear reactor, the former via the
(n,p) reaction and the latter via the ®°Sr/°®Y generator system. The generator parent %°Sr is
separated from fission products. Both 8Sr and *°Y are commercially available. The -
particle endpoint energies of the remaining four radionuclides, namely 4’Sc, ¢’Cu, 3!l and
161Th are relatively low (< 610 keV). The radionuclide **!1 is produced in a nuclear reactor
either via fission or more commonly via the sequence *°Te(n,y)*1M9Te — 311, It has been
known for a very long time and is extensively used in internal radiotherapy. It is
commercially available. The radionuclide '%'Tb is also produced in a nuclear reactor
through the sequence 1%°Gd(n,y)'**Gd — %1Tb and it is available in sufficient quantities. In
recent years interest has also been growing in the comparison of the therapeutic effect of
the four very similar ~-particle emitters, namely #’Sc, 6’Cu, 1Tb, and "’Lu [173-175].
The radionuclides #’Sc and ®’Cu are very interesting but difficult to produce. Therefore
presently strong efforts are underway to produce them through neutron, photon and charged

particle induced reactions.

In contrast to the above mentioned theranostic pairs of radionuclides consisting of
a B*-emitter and a ~-emitter, the pair 2Tb/***Tb is unique in that the radionuclide **?Th
is a BT-emitter and ¥9Tb is an a-emitter. The efficacy of 1*°Tb for targeted o-therapy has
been demonstrated but the exotic production route, involving spallation and on-line mass

separation, makes its availability very rare. Further development work is called for.

Besides the 7 rather established theranostic pairs of radionuclides discussed in this
review, the pair "2As/"'As is in development [cf. 176-178]. Furthermore, there are 3 other
pairs where the combination consists of a positron emitter and an Auger electron emitter
as a therapeutic partner. They are %Ga/®’Ga, 1%In/***In and *2Th/*5Tb. However, since
Auger therapy using the radionuclides 6’Ga, *'!In and ***Tb is still developing, those pairs

have not been considered in this review.

In conclusion, it may be stated that the field of theranostics is attracting tremendous

attention today, but the availability of the respective radionuclides plays a very important
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role. Concerted efforts are needed to produce several of the above mentioned radionuclides
in quantities sufficient for clinical studies. Enhanced utilization of intermediate energy
cyclotrons/accelerators would be very advantageous. Furthermore, for production of a few
special radionuclides, use of powerful electron linear accelerators may be beneficial.
Similarly, the use of some rather unconventional methods, like heavy-ion induced reactions
and on-line mass separation of radioactive products, may also be worthwhile, especially

for small scale production of some exotic radionuclides for tracer studies.
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1216  Fig. 1 Thick target yields of **9Sc calculated from the excitation functions of
1217 44Ca(p,n)*9Sc, *4Ca(d,2n)**9Sc and **K(a,n)**9Sc reactions reported in refs. [25,
1218 26, 28, 30-32]. The values are shown as curves as a function of the particle
1219 energy.
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