000858368 001__ 858368
000858368 005__ 20240711092258.0
000858368 0247_ $$2doi$$a10.1016/j.solener.2018.10.085
000858368 0247_ $$2ISSN$$a0038-092X
000858368 0247_ $$2ISSN$$a1471-1257
000858368 0247_ $$2WOS$$aWOS:000456222500024
000858368 037__ $$aFZJ-2018-07254
000858368 082__ $$a530
000858368 1001_ $$00000-0002-6422-0884$$aBayon, Alicia$$b0$$eCorresponding author
000858368 245__ $$aNovel Solid–Solid Phase-ChangeCcascade Systems for High-temperature Thermal Energy Storage
000858368 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000858368 3367_ $$2DRIVER$$aarticle
000858368 3367_ $$2DataCite$$aOutput Types/Journal article
000858368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544521245_26310
000858368 3367_ $$2BibTeX$$aARTICLE
000858368 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858368 3367_ $$00$$2EndNote$$aJournal Article
000858368 520__ $$aIn this work, we investigate novel solid–solid phase-change cascade systems based on mixtures of lithium and sodium sulfates. Solid–solid phase-change materials (PCMs) can be coupled with concentrated solar power technologies. They present several advantages over solid–liquid PCMs including lower thermal expansion, lower or no corrosiveness, and no need for encapsulation. In solid–solid PCMs, the energy is stored during crystal structure transitions. Specifically, lithium sulfate undergoes a crystal structure transition (monoclinic to cubic) at 576 °C, which is a suitable temperature for concentrated solar thermal technologies. Due to the high cost of lithium sulfate, we evaluated the potential of mixing lithium with sodium sulfate to create solid–solid cascaded PCM systems to provide higher thermal storage densities. We used differential scanning calorimetry, high-temperature in situ X-ray diffraction and thermogravimetric analysis to evaluate the phase-transition temperature, phase-change enthalpy, specific heat capacity, crystalline phase composition and thermal expansion. The obtained values for heat capacity and enthalpies of phase transitions showed good agreement with available thermodynamic databases. Therefore, further calculations of thermodynamic properties of each mixture in the system were performed for designing cascaded latent thermal energy storage system. From the PCM mixtures studied, NaLiSO4 shows the greatest stability under ambient conditions. A mixture of 59.17% NaLiSO4 and 40.83% Li2SO4 allows an optimum charge of both PCMs for power cycles such as supercritical CO2. Economic assessment revealed that this cascade system has an estimated cost of $50.2 kWhth−1.
000858368 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000858368 588__ $$aDataset connected to CrossRef
000858368 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b1
000858368 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry$$b2
000858368 7001_ $$0P:(DE-HGF)0$$aGrigore, Mihaela$$b3
000858368 7001_ $$0P:(DE-HGF)0$$aBruno, Frank$$b4
000858368 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b5
000858368 773__ $$0PERI:(DE-600)2015126-3$$a10.1016/j.solener.2018.10.085$$gVol. 177, p. 274 - 283$$p274 - 283$$tSolar energy$$v177$$x0038-092X$$y2019
000858368 8564_ $$uhttps://juser.fz-juelich.de/record/858368/files/1-s2.0-S0038092X18310892-main.pdf$$yRestricted
000858368 8564_ $$uhttps://juser.fz-juelich.de/record/858368/files/1-s2.0-S0038092X18310892-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858368 909CO $$ooai:juser.fz-juelich.de:858368$$pVDB
000858368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b2$$kFZJ
000858368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b5$$kFZJ
000858368 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000858368 9141_ $$y2019
000858368 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERGY : 2017
000858368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858368 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858368 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858368 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858368 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000858368 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858368 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000858368 980__ $$ajournal
000858368 980__ $$aVDB
000858368 980__ $$aI:(DE-Juel1)IEK-2-20101013
000858368 980__ $$aUNRESTRICTED
000858368 981__ $$aI:(DE-Juel1)IMD-1-20101013