001     858373
005     20240711092259.0
024 7 _ |a 10.1007/s11837-018-2949-2
|2 doi
024 7 _ |a 0148-6608
|2 ISSN
024 7 _ |a 1047-4838
|2 ISSN
024 7 _ |a 1543-1851
|2 ISSN
024 7 _ |a WOS:000440845900026
|2 WOS
037 _ _ |a FZJ-2018-07259
082 _ _ |a 670
100 1 _ |a Huczkowski, P.
|0 P:(DE-Juel1)129727
|b 0
|e Corresponding author
245 _ _ |a Corrosion Behavior of Austenitic Stainless Steels in Oxidizing and Reducing Gases Relevant to Oxyfuel Power Plants
260 _ _ |a [S.l.]
|c 2018
|b TMS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544522402_28837
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oxidation behavior of three austenitic stainless steels was studied at 650°C up to 1000 h. The selected materials (S304HCu, TP347HFG, and Sanicro 25) were exposed to an atmosphere simulating oxyfuel combustion, and the results compared with the behavior in a test gas with addition of CO, thus simulating locally occurring reducing operating conditions. For the 18% Cr steels (S304HCu and TP347HFG), lower corrosion rates were generally found in reducing than oxidizing gas. As might be expected based on its substantially higher Cr content, Sanicro 25 showed lower oxidation rates than the two 18% Cr steels in the oxyfuel gas. However, the opposite was the case in the reducing gas. The higher Ni content resulted in formation of a mixed sulfide/oxide outer layer, which adversely affected the formation of a protective chromia scale, resulting in a higher corrosion rate than for the 18% Cr steels.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Najima, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chyrkin, A.
|0 P:(DE-Juel1)129701
|b 2
700 1 _ |a Quadakkers, W. J.
|0 P:(DE-Juel1)129782
|b 3
773 _ _ |a 10.1007/s11837-018-2949-2
|g Vol. 70, no. 8, p. 1502 - 1510
|0 PERI:(DE-600)2002726-6
|n 8
|p 1502 - 1510
|t JOM
|v 70
|y 2018
|x 1543-1851
856 4 _ |u https://juser.fz-juelich.de/record/858373/files/Huczkowski2018_Article_CorrosionBehaviorOfAusteniticS.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858373/files/Huczkowski2018_Article_CorrosionBehaviorOfAusteniticS.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858373
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JOM-US : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21