001     858378
005     20240711092259.0
024 7 _ |a 10.1007/s11085-017-9809-2
|2 doi
024 7 _ |a WOS:000431319100009
|2 WOS
037 _ _ |a FZJ-2018-07264
082 _ _ |a 540
100 1 _ |a Huczkowski, Pawel
|0 P:(DE-Juel1)129727
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Effect of Sulphur on the Oxidation Behaviour of Possible Construction Materials for Heat Exchangers in Oxyfuel Plants in the Temperature Range 550–700 °C
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544522685_28836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During oxyfuel combustion metallic heat exchangers are subjected to service environments which substantially differ from those prevailing during the conventional air firing process. In the present study the behaviour of three selected construction materials (P92, super S304HCu and alloy 617) during exposure in simulated oxyfuel gas with and without addition of SO2 at temperatures between 550 and 700 °C has been investigated. The alloy microstructure and the corrosion products formed during exposures up to 1000 h were studied by SEM/EDX and correlated with gravimetric data collected during the discontinuous exposures. It was found that the behaviour of the martensitic steel was hardly affected by the presence of SO2; however, in the case of the austenitic steel S304HCu the SO2 suppressed internal oxidation occurring at 650 °C in the SO2-free gas, thus promoting formation of a protective chromium-rich oxide. In the case of the nickel base alloy 617 the SO2 addition increased the corrosion rates at 550 and 650 °C due to replacement of the external chromia scale by a multiphase scale with sulphur-containing surface nodules. At 700 °C the alloy formed a chromia base surface scale and SO2 addition suppressed the formation of volatile Cr species. The results are explained using classical oxidation theory related to conditions for external scale formation in combination with thermodynamic considerations of phase stability as well as relative rates of adsorption of various gas species.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Young, D. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Olszewski, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chyrkin, A.
|0 P:(DE-Juel1)129701
|b 3
700 1 _ |a Quadakkers, W. J.
|0 P:(DE-Juel1)129782
|b 4
773 _ _ |a 10.1007/s11085-017-9809-2
|0 PERI:(DE-600)2018581-9
|n 5-6
|p 651-681
|t Oxidation of metals
|v 89
|y 2018
|x 0030-770X
856 4 _ |u https://juser.fz-juelich.de/record/858378/files/Huczkowski2018_Article_EffectOfSulphurOnTheOxidationB.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858378/files/Huczkowski2018_Article_EffectOfSulphurOnTheOxidationB.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858378
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OXID MET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21