| Home > Publications database > Alumina Formation and Microstructural Changes of Aluminized CoNiCrAlY Coating During High Temperature Exposure in the Temperature Range 925–1075°C > print |
| 001 | 858383 | ||
| 005 | 20240709094454.0 | ||
| 024 | 7 | _ | |a 10.1080/09603409.2017.1392114 |2 doi |
| 024 | 7 | _ | |a 0960-3409 |2 ISSN |
| 024 | 7 | _ | |a 1878-6413 |2 ISSN |
| 024 | 7 | _ | |a WOS:000435483900009 |2 WOS |
| 037 | _ | _ | |a FZJ-2018-07269 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |a Jalowicka, A. |0 P:(DE-Juel1)139042 |b 0 |
| 245 | _ | _ | |a Alumina Formation and Microstructural Changes of Aluminized CoNiCrAlY Coating During High Temperature Exposure in the Temperature Range 925–1075°C |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2018 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1544530103_28838 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a MCrAlY (M = Ni, Co) coatings are commonly used on gas-turbine components as oxidation resistant overlay coatings and bondcoats for thermal barrier systems. In the present work the microstructural features and oxidation behavior of an aluminized Co-base MCrAlY-coating on a Ni-based superalloy have been investigated in the temperature range 925–1075 °C. Microstructural studies of the oxidized coatings by SEM/EBSD were complemented with numerical thermodynamic calculations using the software package ThermoCalc. In the as-received condition the outer part of the coating consisted mostly of β-(Ni,Co)Al. Formation of σ-CoCr was observed at the interface between the β-layer and the inner initial CoNiCrAlY. During high-temperature air exposure alumina based surface scales were formed but the oxidation induced Al depletion of the aluminized coating did not result in formation of the γ’-(Ni3Al) phase. Rather, the subscale formation of Co/Cr-rich phases was observed and a direct transformation of β- into γ-Ni phase after longer times. It is expected that these subscale microstructural changes thus affect the alumina formation and growth as well as the critical aluminum depletion in a different manner as in the case of corresponding β-NiAl coatings, although a direct comparison between various coating systems was not possible on the basis of the present results. |
| 536 | _ | _ | |a 111 - Efficient and Flexible Power Plants (POF3-111) |0 G:(DE-HGF)POF3-111 |c POF3-111 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Naumenko, D. |0 P:(DE-Juel1)129766 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Ernsberger, M. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Herzog, R. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Quadakkers, W. J. |0 P:(DE-Juel1)129782 |b 4 |
| 773 | _ | _ | |a 10.1080/09603409.2017.1392114 |g Vol. 35, no. 1-3, p. 66 - 77 |0 PERI:(DE-600)2035150-1 |n 1-3 |p 66 - 77 |t Materials at high temperatures |v 35 |y 2018 |x 1878-6413 |
| 909 | C | O | |o oai:juser.fz-juelich.de:858383 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)139042 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129766 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129782 |
| 913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-111 |2 G:(DE-HGF)POF3-100 |v Efficient and Flexible Power Plants |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATER HIGH TEMP : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|