000858396 001__ 858396
000858396 005__ 20210129235938.0
000858396 0247_ $$2doi$$a10.1073/pnas.1715483115
000858396 0247_ $$2ISSN$$a0027-8424
000858396 0247_ $$2ISSN$$a1091-6490
000858396 0247_ $$2Handle$$a2128/21312
000858396 0247_ $$2pmid$$apmid:29467288
000858396 0247_ $$2WOS$$aWOS:000426671900066
000858396 0247_ $$2altmetric$$aaltmetric:33512961
000858396 037__ $$aFZJ-2018-07282
000858396 082__ $$a500
000858396 1001_ $$0P:(DE-HGF)0$$aOhhashi, Yumiko$$b0
000858396 245__ $$aMolecular basis for diversification of yeast prion strain conformation
000858396 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2018
000858396 3367_ $$2DRIVER$$aarticle
000858396 3367_ $$2DataCite$$aOutput Types/Journal article
000858396 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547824603_9364
000858396 3367_ $$2BibTeX$$aARTICLE
000858396 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858396 3367_ $$00$$2EndNote$$aJournal Article
000858396 520__ $$aSelf-propagating β-sheet–rich fibrillar protein aggregates, amyloidfibers, are often associated with cellular dysfunction and disease.Distinct amyloid conformations dictate different physiological consequences,such as cellular toxicity. However, the origin of the diversityof amyloid conformation remains unknown. Here, we suggest thataltered conformational equilibrium in natively disordered monomericproteins leads to the adaptation of alternate amyloid conformationsthat have different phenotypic effects. We performed acomprehensive high-resolution structural analysis of Sup35NM, anN-terminal fragment of the Sup35 yeast prion protein, and foundthat monomeric Sup35NM harbored latent local compact structuresdespite its overall disordered conformation. When the hidden localmicrostructures were relaxed by genetic mutations or solvent conditions,Sup35NM adopted a strikingly different amyloid conformation,which redirected chaperone-mediated fiber fragmentation and modulatedprion strain phenotypes. Thus, dynamic conformational fluctuationsin natively disordered monomeric proteins represent aposttranslational mechanism for diversification of aggregate structuresand cellular phenotypes.
000858396 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000858396 588__ $$aDataset connected to CrossRef
000858396 7001_ $$0P:(DE-HGF)0$$aYamaguchi, Yoshiki$$b1
000858396 7001_ $$0P:(DE-HGF)0$$aKurahashi, Hiroshi$$b2
000858396 7001_ $$00000-0001-9573-5162$$aKamatari, Yuji O.$$b3
000858396 7001_ $$0P:(DE-HGF)0$$aSugiyama, Shinju$$b4
000858396 7001_ $$0P:(DE-Juel1)161489$$aUluca, Boran$$b5$$ufzj
000858396 7001_ $$0P:(DE-Juel1)145776$$aPiechatzek, Timo$$b6
000858396 7001_ $$0P:(DE-HGF)0$$aKomi, Yusuke$$b7
000858396 7001_ $$0P:(DE-HGF)0$$aShida, Toshinobu$$b8
000858396 7001_ $$0P:(DE-Juel1)132017$$aMüller, Henrik$$b9
000858396 7001_ $$0P:(DE-HGF)0$$aHanashima, Shinya$$b10
000858396 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b11$$ufzj
000858396 7001_ $$0P:(DE-HGF)0$$aKuwata, Kazuo$$b12
000858396 7001_ $$0P:(DE-HGF)0$$aTanaka, Motomasa$$b13$$eCorresponding author
000858396 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1715483115$$gVol. 115, no. 10, p. 2389 - 2394$$n10$$p2389 - 2394$$tProceedings of the National Academy of Sciences of the United States of America$$v115$$x1091-6490$$y2018
000858396 8564_ $$uhttps://juser.fz-juelich.de/record/858396/files/Molecular%20basis%20for%20diversification%20of%20yeast%20prion%20strain%20conformation_2018.pdf$$yOpenAccess
000858396 8564_ $$uhttps://juser.fz-juelich.de/record/858396/files/Molecular%20basis%20for%20diversification%20of%20yeast%20prion%20strain%20conformation_2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858396 909CO $$ooai:juser.fz-juelich.de:858396$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161489$$aForschungszentrum Jülich$$b5$$kFZJ
000858396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich$$b11$$kFZJ
000858396 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000858396 9141_ $$y2018
000858396 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858396 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858396 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858396 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000858396 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2017
000858396 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2017
000858396 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858396 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858396 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858396 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858396 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858396 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858396 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000858396 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858396 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000858396 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858396 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000858396 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858396 920__ $$lyes
000858396 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000858396 9801_ $$aFullTexts
000858396 980__ $$ajournal
000858396 980__ $$aVDB
000858396 980__ $$aUNRESTRICTED
000858396 980__ $$aI:(DE-Juel1)ICS-6-20110106
000858396 981__ $$aI:(DE-Juel1)IBI-7-20200312