001     858396
005     20210129235938.0
024 7 _ |a 10.1073/pnas.1715483115
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 2128/21312
|2 Handle
024 7 _ |a pmid:29467288
|2 pmid
024 7 _ |a WOS:000426671900066
|2 WOS
024 7 _ |a altmetric:33512961
|2 altmetric
037 _ _ |a FZJ-2018-07282
082 _ _ |a 500
100 1 _ |a Ohhashi, Yumiko
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular basis for diversification of yeast prion strain conformation
260 _ _ |a Washington, DC
|c 2018
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547824603_9364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Self-propagating β-sheet–rich fibrillar protein aggregates, amyloidfibers, are often associated with cellular dysfunction and disease.Distinct amyloid conformations dictate different physiological consequences,such as cellular toxicity. However, the origin of the diversityof amyloid conformation remains unknown. Here, we suggest thataltered conformational equilibrium in natively disordered monomericproteins leads to the adaptation of alternate amyloid conformationsthat have different phenotypic effects. We performed acomprehensive high-resolution structural analysis of Sup35NM, anN-terminal fragment of the Sup35 yeast prion protein, and foundthat monomeric Sup35NM harbored latent local compact structuresdespite its overall disordered conformation. When the hidden localmicrostructures were relaxed by genetic mutations or solvent conditions,Sup35NM adopted a strikingly different amyloid conformation,which redirected chaperone-mediated fiber fragmentation and modulatedprion strain phenotypes. Thus, dynamic conformational fluctuationsin natively disordered monomeric proteins represent aposttranslational mechanism for diversification of aggregate structuresand cellular phenotypes.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yamaguchi, Yoshiki
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kurahashi, Hiroshi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kamatari, Yuji O.
|0 0000-0001-9573-5162
|b 3
700 1 _ |a Sugiyama, Shinju
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Uluca, Boran
|0 P:(DE-Juel1)161489
|b 5
|u fzj
700 1 _ |a Piechatzek, Timo
|0 P:(DE-Juel1)145776
|b 6
700 1 _ |a Komi, Yusuke
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shida, Toshinobu
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Müller, Henrik
|0 P:(DE-Juel1)132017
|b 9
700 1 _ |a Hanashima, Shinya
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Heise, Henrike
|0 P:(DE-Juel1)132002
|b 11
|u fzj
700 1 _ |a Kuwata, Kazuo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Tanaka, Motomasa
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1073/pnas.1715483115
|g Vol. 115, no. 10, p. 2389 - 2394
|0 PERI:(DE-600)1461794-8
|n 10
|p 2389 - 2394
|t Proceedings of the National Academy of Sciences of the United States of America
|v 115
|y 2018
|x 1091-6490
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/858396/files/Molecular%20basis%20for%20diversification%20of%20yeast%20prion%20strain%20conformation_2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/858396/files/Molecular%20basis%20for%20diversification%20of%20yeast%20prion%20strain%20conformation_2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:858396
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161489
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)132002
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b P NATL ACAD SCI USA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21