000858427 001__ 858427
000858427 005__ 20240711101547.0
000858427 0247_ $$2doi$$a10.1002/er.4508
000858427 0247_ $$2ISSN$$a0363-907X
000858427 0247_ $$2ISSN$$a1099-114X
000858427 0247_ $$2WOS$$aWOS:000471071800035
000858427 037__ $$aFZJ-2018-07309
000858427 082__ $$a620
000858427 1001_ $$0P:(DE-HGF)0$$aInce, Alper Can$$b0$$eCorresponding author
000858427 245__ $$aSemiempirical thermodynamic modeling of a direct methanol fuel cell system
000858427 260__ $$aLondon [u.a.]$$bWiley-Intersience$$c2019
000858427 3367_ $$2DRIVER$$aarticle
000858427 3367_ $$2DataCite$$aOutput Types/Journal article
000858427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561627466_25898
000858427 3367_ $$2BibTeX$$aARTICLE
000858427 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858427 3367_ $$00$$2EndNote$$aJournal Article
000858427 520__ $$aIn this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in‐house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm−2 min−1) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm−2, 0.75 M, and 20 mL cm−2 min−1, respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.
000858427 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000858427 588__ $$aDataset connected to CrossRef
000858427 7001_ $$0P:(DE-HGF)0$$aKaraoglan, Mustafa Umut$$b1
000858427 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b2$$ufzj
000858427 7001_ $$0P:(DE-HGF)0$$aColpan, C. Ozgur$$b3
000858427 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4$$ufzj
000858427 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5$$ufzj
000858427 773__ $$0PERI:(DE-600)1480879-1$$a10.1002/er.4508$$gp. er.4508$$n8$$p3601-3615$$tInternational journal of energy research$$v43$$x0363-907X$$y2019
000858427 8564_ $$uhttps://juser.fz-juelich.de/record/858427/files/Ince_et_al-2019-International_Journal_of_Energy_Research.pdf$$yRestricted
000858427 8564_ $$uhttps://juser.fz-juelich.de/record/858427/files/Ince_et_al-2019-International_Journal_of_Energy_Research.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858427 909CO $$ooai:juser.fz-juelich.de:858427$$pVDB
000858427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b2$$kFZJ
000858427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000858427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000858427 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000858427 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000858427 9141_ $$y2019
000858427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J ENERG RES : 2017
000858427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858427 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858427 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858427 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858427 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000858427 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858427 920__ $$lyes
000858427 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000858427 980__ $$ajournal
000858427 980__ $$aVDB
000858427 980__ $$aI:(DE-Juel1)IEK-3-20101013
000858427 980__ $$aUNRESTRICTED
000858427 981__ $$aI:(DE-Juel1)ICE-2-20101013