001     858427
005     20240711101547.0
024 7 _ |a 10.1002/er.4508
|2 doi
024 7 _ |a 0363-907X
|2 ISSN
024 7 _ |a 1099-114X
|2 ISSN
024 7 _ |a WOS:000471071800035
|2 WOS
037 _ _ |a FZJ-2018-07309
082 _ _ |a 620
100 1 _ |a Ince, Alper Can
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Semiempirical thermodynamic modeling of a direct methanol fuel cell system
260 _ _ |a London [u.a.]
|c 2019
|b Wiley-Intersience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1561627466_25898
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in‐house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm−2 min−1) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm−2, 0.75 M, and 20 mL cm−2 min−1, respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Karaoglan, Mustafa Umut
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Glüsen, Andreas
|0 P:(DE-Juel1)129851
|b 2
|u fzj
700 1 _ |a Colpan, C. Ozgur
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 4
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
|u fzj
773 _ _ |a 10.1002/er.4508
|g p. er.4508
|0 PERI:(DE-600)1480879-1
|n 8
|p 3601-3615
|t International journal of energy research
|v 43
|y 2019
|x 0363-907X
856 4 _ |u https://juser.fz-juelich.de/record/858427/files/Ince_et_al-2019-International_Journal_of_Energy_Research.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858427/files/Ince_et_al-2019-International_Journal_of_Energy_Research.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858427
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENERG RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21