000858440 001__ 858440
000858440 005__ 20210129235948.0
000858440 0247_ $$2doi$$a10.5194/acp-18-16461-2018
000858440 0247_ $$2Handle$$a2128/20726
000858440 0247_ $$2WOS$$aWOS:000450808500001
000858440 0247_ $$2altmetric$$aaltmetric:51495788
000858440 037__ $$aFZJ-2018-07321
000858440 082__ $$a550
000858440 1001_ $$0P:(DE-HGF)0$$aSullivan, Sylvia C.$$b0$$eCorresponding author
000858440 245__ $$aThe effect of secondary ice production parameterization on the simulation of a cold frontal rainband
000858440 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000858440 3367_ $$2DRIVER$$aarticle
000858440 3367_ $$2DataCite$$aOutput Types/Journal article
000858440 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544690927_22239
000858440 3367_ $$2BibTeX$$aARTICLE
000858440 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858440 3367_ $$00$$2EndNote$$aJournal Article
000858440 520__ $$aSecondary ice production via processes like rime splintering, frozen droplet shattering, and breakup upon ice hydrometeor collision have been proposed to explain discrepancies between in-cloud ice crystal and ice-nucleating particle numbers. To understand the impact of this additional ice crystal generation on surface precipitation, we present one of the first studies to implement frozen droplet shattering and ice–ice collisional breakup parameterizations in a mesoscale model. We simulate a cold frontal rainband from the Aerosol Properties, PRocesses, And InfluenceS on the Earth's Climate campaign and investigate the impact of the new parameterizations on the simulated ice crystal number concentrations (ICNC) and precipitation. Near the convective regions of the rainband, contributions to ICNC can be as large from secondary production as from primary nucleation, but ICNCs greater than 50L−1 remain underestimated by the model. The addition of the secondary production parameterizations also clearly intensifies the differences in both accumulated precipitation and precipitation rate between the convective towers and non-convective gap regions. We suggest, then, that secondary ice production parameterizations be included in large-scale models on the basis of large hydrometeor concentration and convective activity criteria.
000858440 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000858440 7001_ $$0P:(DE-HGF)0$$aBarthlott, Christian$$b1
000858440 7001_ $$0P:(DE-HGF)0$$aCrosier, Jonathan$$b2
000858440 7001_ $$0P:(DE-Juel1)144419$$aZhukov, Ilya$$b3$$ufzj
000858440 7001_ $$0P:(DE-HGF)0$$aNenes, Athanasios$$b4
000858440 7001_ $$0P:(DE-HGF)0$$aHoose, Corinna$$b5
000858440 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-16461-2018$$p16461-16480$$tAtmospheric chemistry and physics$$v18$$x1680-7316$$y2018
000858440 8564_ $$uhttps://juser.fz-juelich.de/record/858440/files/acp-18-16461-2018.pdf$$yOpenAccess
000858440 8564_ $$uhttps://juser.fz-juelich.de/record/858440/files/acp-18-16461-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858440 909CO $$ooai:juser.fz-juelich.de:858440$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858440 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858440 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858440 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858440 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000858440 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858440 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858440 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858440 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858440 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858440 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858440 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000858440 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000858440 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858440 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858440 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858440 9141_ $$y2018
000858440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144419$$aForschungszentrum Jülich$$b3$$kFZJ
000858440 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000858440 920__ $$lyes
000858440 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858440 980__ $$ajournal
000858440 980__ $$aVDB
000858440 980__ $$aUNRESTRICTED
000858440 980__ $$aI:(DE-Juel1)JSC-20090406
000858440 9801_ $$aFullTexts