001     858440
005     20210129235948.0
024 7 _ |2 doi
|a 10.5194/acp-18-16461-2018
024 7 _ |2 Handle
|a 2128/20726
024 7 _ |a WOS:000450808500001
|2 WOS
024 7 _ |a altmetric:51495788
|2 altmetric
037 _ _ |a FZJ-2018-07321
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Sullivan, Sylvia C.
|b 0
|e Corresponding author
245 _ _ |a The effect of secondary ice production parameterization on the simulation of a cold frontal rainband
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1544690927_22239
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Secondary ice production via processes like rime splintering, frozen droplet shattering, and breakup upon ice hydrometeor collision have been proposed to explain discrepancies between in-cloud ice crystal and ice-nucleating particle numbers. To understand the impact of this additional ice crystal generation on surface precipitation, we present one of the first studies to implement frozen droplet shattering and ice–ice collisional breakup parameterizations in a mesoscale model. We simulate a cold frontal rainband from the Aerosol Properties, PRocesses, And InfluenceS on the Earth's Climate campaign and investigate the impact of the new parameterizations on the simulated ice crystal number concentrations (ICNC) and precipitation. Near the convective regions of the rainband, contributions to ICNC can be as large from secondary production as from primary nucleation, but ICNCs greater than 50L−1 remain underestimated by the model. The addition of the secondary production parameterizations also clearly intensifies the differences in both accumulated precipitation and precipitation rate between the convective towers and non-convective gap regions. We suggest, then, that secondary ice production parameterizations be included in large-scale models on the basis of large hydrometeor concentration and convective activity criteria.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Barthlott, Christian
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Crosier, Jonathan
|b 2
700 1 _ |0 P:(DE-Juel1)144419
|a Zhukov, Ilya
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Nenes, Athanasios
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Hoose, Corinna
|b 5
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-18-16461-2018
|p 16461-16480
|t Atmospheric chemistry and physics
|v 18
|x 1680-7316
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/858440/files/acp-18-16461-2018.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858440/files/acp-18-16461-2018.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:858440
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144419
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21