000858451 001__ 858451
000858451 005__ 20240711101553.0
000858451 0247_ $$2doi$$a10.1016/j.elecom.2018.10.021
000858451 0247_ $$2ISSN$$a1388-2481
000858451 0247_ $$2ISSN$$a1873-1902
000858451 0247_ $$2WOS$$aWOS:000451326800021
000858451 0247_ $$2altmetric$$aaltmetric:52717949
000858451 037__ $$aFZJ-2018-07329
000858451 082__ $$a540
000858451 1001_ $$0P:(DE-Juel1)173820$$aLiu, Chang$$b0$$ufzj
000858451 245__ $$aPerformance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers
000858451 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000858451 3367_ $$2DRIVER$$aarticle
000858451 3367_ $$2DataCite$$aOutput Types/Journal article
000858451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544691063_22238
000858451 3367_ $$2BibTeX$$aARTICLE
000858451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858451 3367_ $$00$$2EndNote$$aJournal Article
000858451 520__ $$aTitanium-based porous transport layers (PTL) used in polymer electrolyte membrane (PEM) water electrolyzers suffer from surface passivation (titanium oxidation), which increases the interface resistance between the PTL and electrode. For long-term operation, PTLs are typically coated with considerable amounts of platinum or gold to ensure reasonable performance profiles over time. Moreover, it is well known that the oxide forms of platinum and gold are not stable under electrolysis conditions. In this study, an easy and scalable method is introduced to protect the titanium PTL from passivation by sputtering very thin layers of iridium onto commercially-available titanium PTLs. The iridium layer reduces the overall ohmic resistance of the PTL/catalyst layer interface and improves the cell's performance to that achieved with carbon-based PTLs. The coating process homogeneously deposited iridium throughout the inner structure of the PTL. The findings of this study may lead to the use of iridium as a protective layer for titanium PTLs, potentially enable operation at increased cell voltages and lead to increased electrolyzer durability.
000858451 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000858451 588__ $$aDataset connected to CrossRef
000858451 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b1$$eCorresponding author$$ufzj
000858451 7001_ $$0P:(DE-Juel1)172758$$aBender, Guido$$b2
000858451 7001_ $$0P:(DE-Juel1)169432$$aEverwand, Andreas$$b3$$ufzj
000858451 7001_ $$0P:(DE-HGF)0$$aLickert, Thomas$$b4
000858451 7001_ $$0P:(DE-HGF)0$$aYoung, James L.$$b5
000858451 7001_ $$00000-0001-8895-6303$$aSmolinka, Tom$$b6
000858451 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b7$$ufzj
000858451 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b8$$ufzj
000858451 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2018.10.021$$gVol. 97, p. 96 - 99$$p96 - 99$$tElectrochemistry communications$$v97$$x1388-2481$$y2018
000858451 8564_ $$uhttps://juser.fz-juelich.de/record/858451/files/1-s2.0-S1388248118302741-main.pdf$$yRestricted
000858451 8564_ $$uhttps://juser.fz-juelich.de/record/858451/files/1-s2.0-S1388248118302741-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858451 909CO $$ooai:juser.fz-juelich.de:858451$$pVDB
000858451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173820$$aForschungszentrum Jülich$$b0$$kFZJ
000858451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b1$$kFZJ
000858451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169432$$aForschungszentrum Jülich$$b3$$kFZJ
000858451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b7$$kFZJ
000858451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b7$$kRWTH
000858451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b8$$kFZJ
000858451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b8$$kRWTH
000858451 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000858451 9141_ $$y2018
000858451 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858451 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHEM COMMUN : 2017
000858451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858451 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858451 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858451 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858451 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858451 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858451 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858451 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858451 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858451 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858451 920__ $$lyes
000858451 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000858451 980__ $$ajournal
000858451 980__ $$aVDB
000858451 980__ $$aI:(DE-Juel1)IEK-3-20101013
000858451 980__ $$aUNRESTRICTED
000858451 981__ $$aI:(DE-Juel1)ICE-2-20101013