001     858451
005     20240711101553.0
024 7 _ |a 10.1016/j.elecom.2018.10.021
|2 doi
024 7 _ |a 1388-2481
|2 ISSN
024 7 _ |a 1873-1902
|2 ISSN
024 7 _ |a WOS:000451326800021
|2 WOS
024 7 _ |a altmetric:52717949
|2 altmetric
037 _ _ |a FZJ-2018-07329
082 _ _ |a 540
100 1 _ |a Liu, Chang
|0 P:(DE-Juel1)173820
|b 0
|u fzj
245 _ _ |a Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544691063_22238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Titanium-based porous transport layers (PTL) used in polymer electrolyte membrane (PEM) water electrolyzers suffer from surface passivation (titanium oxidation), which increases the interface resistance between the PTL and electrode. For long-term operation, PTLs are typically coated with considerable amounts of platinum or gold to ensure reasonable performance profiles over time. Moreover, it is well known that the oxide forms of platinum and gold are not stable under electrolysis conditions. In this study, an easy and scalable method is introduced to protect the titanium PTL from passivation by sputtering very thin layers of iridium onto commercially-available titanium PTLs. The iridium layer reduces the overall ohmic resistance of the PTL/catalyst layer interface and improves the cell's performance to that achieved with carbon-based PTLs. The coating process homogeneously deposited iridium throughout the inner structure of the PTL. The findings of this study may lead to the use of iridium as a protective layer for titanium PTLs, potentially enable operation at increased cell voltages and lead to increased electrolyzer durability.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Bender, Guido
|0 P:(DE-Juel1)172758
|b 2
700 1 _ |a Everwand, Andreas
|0 P:(DE-Juel1)169432
|b 3
|u fzj
700 1 _ |a Lickert, Thomas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Young, James L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Smolinka, Tom
|0 0000-0001-8895-6303
|b 6
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 7
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 8
|u fzj
773 _ _ |a 10.1016/j.elecom.2018.10.021
|g Vol. 97, p. 96 - 99
|0 PERI:(DE-600)2027290-X
|p 96 - 99
|t Electrochemistry communications
|v 97
|y 2018
|x 1388-2481
856 4 _ |u https://juser.fz-juelich.de/record/858451/files/1-s2.0-S1388248118302741-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858451/files/1-s2.0-S1388248118302741-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858451
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173820
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHEM COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21