TY  - CHAP
AU  - Beumer, Claudia
AU  - Schölzel, Daniel
AU  - König, Anna
AU  - Uluca, Boran
AU  - Weirich, Franziska
AU  - Heise, Henrike
A3  - Hodgkinson, Paul
TI  - Chapter 10. Isotopically Enriched Systems
VL  - No. 15
CY  - London
PB  - Royal Society of Chemistry
M1  - FZJ-2018-07345
SN  - 978-1-78801-046-7
T2  - New developments in NMR
SP  - xvi, 435 Seiten : illustrations
PY  - 2018
AB  - Most solid-state NMR measurements employ rare-spin nuclei, such as 13C or 15N, for detection. However, the low natural abundance of those spins limits the possibility of obtaining multidimensional homo- or hetero-nuclear solid-state NMR-spectra, which rely on internuclear correlations between those rare spins, unless signal enhancement or isotopic labelling is applied. In this chapter, we first give an overview of different techniques for selective and uniform isotope labelling of biomolecules. In the following sections, we describe different homo- and hetero-nuclear recoupling techniques and their use in multidimensional NMR spectroscopy. In particular, we emphasize the difference between zeroth-order recoupling techniques, which are well-suited for dipolar transfers between spins close in space, and second- and higher-order recoupling schemes, which allow the detection of long-range correlations. We also provide some examples how these techniques are applied towards structure elucidation of biomolecules. Finally, we briefly outline the technique of signal enhancement by dynamic nuclear polarization, a method that may in part help to overcome the need for isotopic enrichment.
KW  - Festkörper-NMR-Spektroskopie (gnd)
LB  - PUB:(DE-HGF)7
UR  - https://juser.fz-juelich.de/record/858473
ER  -