000858528 001__ 858528
000858528 005__ 20210130000010.0
000858528 0247_ $$2doi$$a10.1002/cbic.201800673
000858528 0247_ $$2ISSN$$a1439-4227
000858528 0247_ $$2ISSN$$a1439-7633
000858528 0247_ $$2pmid$$apmid:30537293
000858528 0247_ $$2WOS$$aWOS:000462914700013
000858528 0247_ $$2altmetric$$aaltmetric:55770688
000858528 0247_ $$2Handle$$a2128/23484
000858528 037__ $$aFZJ-2018-07399
000858528 082__ $$a540
000858528 1001_ $$0P:(DE-Juel1)166535$$aAschenbrenner, Jennifer$$b0
000858528 245__ $$aMicrobial production of natural and non‐natural monolignols with Escherichia coli
000858528 260__ $$aWeinheim$$bWiley-VCH$$c2019
000858528 3367_ $$2DRIVER$$aarticle
000858528 3367_ $$2DataCite$$aOutput Types/Journal article
000858528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564465610_18806
000858528 3367_ $$2BibTeX$$aARTICLE
000858528 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858528 3367_ $$00$$2EndNote$$aJournal Article
000858528 500__ $$aBiotechnologie 1
000858528 520__ $$aPhenylpropanoids and phenylpropanoid‐derived plant polyphenols find numerous applications in the food and pharmaceutical industries. In recent years, several microbial platform organisms have been engineered towards producing such compounds. However, for the most part, microbial (poly)phenol production is inspired by nature, so naturally occurring compounds have predominantly been produced to date.Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding monolignols. The performed biotransformations showed that this strain is able to catalyze the stepwise reduction of chemically interesting unnatural phenylpropenoic acids such as 3,4,5‐trimethoxycinnamic acid, 5‐bromoferulic acid, 2‐nitroferulic acid, and a “bicyclic” p‐coumaric acid derivative, in addition to six naturally occurring phenylpropenoic acids.
000858528 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000858528 588__ $$aDataset connected to CrossRef
000858528 7001_ $$0P:(DE-Juel1)168363$$aMarx, Patrick$$b1
000858528 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b2$$ufzj
000858528 7001_ $$0P:(DE-Juel1)144031$$aMarienhagen, Jan$$b3$$eCorresponding author
000858528 773__ $$0PERI:(DE-600)2020469-3$$a10.1002/cbic.201800673$$gp. cbic.201800673$$n7$$p949-954$$tChemBioChem$$v20$$x1439-7633$$y2019
000858528 8564_ $$uhttps://juser.fz-juelich.de/record/858528/files/Aschenbrenner%20J.%20et%20al%20ChemBioChem%2020%20949-954.pdf$$yRestricted
000858528 8564_ $$uhttps://juser.fz-juelich.de/record/858528/files/Aschenbrenner%20J.%20et%20al%20ChemBioChem%2020%20949-954.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858528 8564_ $$uhttps://juser.fz-juelich.de/record/858528/files/Aschenbrenner%20Monolignole%202019%20incl.%20Supplements.pdf$$yPublished on 2018-12-11. Available in OpenAccess from 2019-12-11.
000858528 8564_ $$uhttps://juser.fz-juelich.de/record/858528/files/Aschenbrenner%20Monolignole%202019%20incl.%20Supplements.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-12-11. Available in OpenAccess from 2019-12-11.
000858528 909CO $$ooai:juser.fz-juelich.de:858528$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168363$$aForschungszentrum Jülich$$b1$$kFZJ
000858528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b2$$kFZJ
000858528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144031$$aForschungszentrum Jülich$$b3$$kFZJ
000858528 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000858528 9141_ $$y2019
000858528 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858528 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858528 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000858528 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMBIOCHEM : 2017
000858528 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858528 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858528 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858528 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858528 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858528 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858528 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858528 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858528 920__ $$lyes
000858528 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000858528 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x1
000858528 980__ $$ajournal
000858528 980__ $$aVDB
000858528 980__ $$aUNRESTRICTED
000858528 980__ $$aI:(DE-Juel1)IBG-1-20101118
000858528 980__ $$aI:(DE-Juel1)IBOC-20090406
000858528 9801_ $$aFullTexts