000858533 001__ 858533
000858533 005__ 20240712112818.0
000858533 0247_ $$2doi$$a10.1039/C8NR06008H
000858533 0247_ $$2ISSN$$a2040-3364
000858533 0247_ $$2ISSN$$a2040-3372
000858533 0247_ $$2pmid$$apmid:30426121
000858533 0247_ $$2WOS$$aWOS:000451738900044
000858533 0247_ $$2altmetric$$aaltmetric:51171186
000858533 037__ $$aFZJ-2018-07404
000858533 041__ $$aEnglish
000858533 082__ $$a600
000858533 1001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b0$$eCorresponding author
000858533 245__ $$aTransformation of carbon-supported Pt–Ni octahedral electrocatalysts into cubes: toward stable electrocatalysis
000858533 260__ $$aCambridge$$bRSC Publ.$$c2018
000858533 3367_ $$2DRIVER$$aarticle
000858533 3367_ $$2DataCite$$aOutput Types/Journal article
000858533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544809928_1951
000858533 3367_ $$2BibTeX$$aARTICLE
000858533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858533 3367_ $$00$$2EndNote$$aJournal Article
000858533 520__ $$aOctahedral Pt–Ni catalyst nanoparticles (NPs) are predicted to exhibit high activity for the oxygen reduction reaction. However, until now this class of catalysts has been limited by its long-term performance, as a result of compositional and morphological instabilities of the NPs. In situ transmission electron microscopy (TEM) is a powerful technique for understanding morphological and compositional evolution under controlled conditions. It is of great importance to study the evolution of the morphology and elemental distribution in bimetallic NPs and their interaction with the support in reducing and oxidizing treatments at the atomic scale for the rational design of catalysts. Here, we use in situ TEM to follow dynamic changes in the NP morphology, faceting and elemental segregation under working conditions in previously unreported Pt–Ni core–shell octahedral structures. We follow changes in the Pt–Ni catalyst from a segregated structure to an alloyed shell configuration and then a more spherical structure as a function of temperature under reducing conditions. Exposure to an oxidizing environment then leads to oxidation of the C support, while the spherical NPs undergo a cycle of transformations into cubic NPs followed by the reaction to spherical NPs. The formation of the cubic NPs results from CO formation during C oxidation, before it is finally oxidized to CO2. Our observations may pave the way towards the design of optimized structure–stability electrocatalysts and highlight the importance of TEM visualization of degradation and transformation pathways in bimetallic Pt–Ni NPs under reducing and oxidizing conditions.
000858533 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000858533 588__ $$aDataset connected to CrossRef
000858533 7001_ $$0P:(DE-Juel1)166087$$aGocyla, Martin$$b1
000858533 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b2
000858533 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3
000858533 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4$$ufzj
000858533 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
000858533 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b6$$ufzj
000858533 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR06008H$$gVol. 10, no. 45, p. 21353 - 21362$$n45$$p21353 - 21362$$tNanoscale$$v10$$x2040-3372$$y2018
000858533 8564_ $$uhttps://juser.fz-juelich.de/record/858533/files/c8nr06008h.pdf$$yRestricted
000858533 8564_ $$uhttps://juser.fz-juelich.de/record/858533/files/c8nr06008h.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858533 909CO $$ooai:juser.fz-juelich.de:858533$$pVDB
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b0$$kFZJ
000858533 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)166087$$aER-C1 $$b1
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b2$$kFZJ
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000858533 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000858533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000858533 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000858533 9141_ $$y2018
000858533 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000858533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000858533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858533 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858533 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858533 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858533 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000858533 920__ $$lyes
000858533 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000858533 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000858533 980__ $$ajournal
000858533 980__ $$aVDB
000858533 980__ $$aI:(DE-Juel1)IEK-9-20110218
000858533 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000858533 980__ $$aUNRESTRICTED
000858533 981__ $$aI:(DE-Juel1)IET-1-20110218