001     858533
005     20240712112818.0
024 7 _ |a 10.1039/C8NR06008H
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a pmid:30426121
|2 pmid
024 7 _ |a WOS:000451738900044
|2 WOS
024 7 _ |a altmetric:51171186
|2 altmetric
037 _ _ |a FZJ-2018-07404
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Shviro, Meital
|0 P:(DE-Juel1)165174
|b 0
|e Corresponding author
245 _ _ |a Transformation of carbon-supported Pt–Ni octahedral electrocatalysts into cubes: toward stable electrocatalysis
260 _ _ |a Cambridge
|c 2018
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544809928_1951
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Octahedral Pt–Ni catalyst nanoparticles (NPs) are predicted to exhibit high activity for the oxygen reduction reaction. However, until now this class of catalysts has been limited by its long-term performance, as a result of compositional and morphological instabilities of the NPs. In situ transmission electron microscopy (TEM) is a powerful technique for understanding morphological and compositional evolution under controlled conditions. It is of great importance to study the evolution of the morphology and elemental distribution in bimetallic NPs and their interaction with the support in reducing and oxidizing treatments at the atomic scale for the rational design of catalysts. Here, we use in situ TEM to follow dynamic changes in the NP morphology, faceting and elemental segregation under working conditions in previously unreported Pt–Ni core–shell octahedral structures. We follow changes in the Pt–Ni catalyst from a segregated structure to an alloyed shell configuration and then a more spherical structure as a function of temperature under reducing conditions. Exposure to an oxidizing environment then leads to oxidation of the C support, while the spherical NPs undergo a cycle of transformations into cubic NPs followed by the reaction to spherical NPs. The formation of the cubic NPs results from CO formation during C oxidation, before it is finally oxidized to CO2. Our observations may pave the way towards the design of optimized structure–stability electrocatalysts and highlight the importance of TEM visualization of degradation and transformation pathways in bimetallic Pt–Ni NPs under reducing and oxidizing conditions.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gocyla, Martin
|0 P:(DE-Juel1)166087
|b 1
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 2
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 4
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 6
|u fzj
773 _ _ |a 10.1039/C8NR06008H
|g Vol. 10, no. 45, p. 21353 - 21362
|0 PERI:(DE-600)2515664-0
|n 45
|p 21353 - 21362
|t Nanoscale
|v 10
|y 2018
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/858533/files/c8nr06008h.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858533/files/c8nr06008h.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858533
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165174
910 1 _ |a ER-C1
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)166087
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21