| 001 | 858538 | ||
| 005 | 20220930130203.0 | ||
| 024 | 7 | _ | |a 10.3389/fbioe.2018.00196 |2 doi |
| 024 | 7 | _ | |a 2128/21137 |2 Handle |
| 024 | 7 | _ | |a pmid:30631764 |2 pmid |
| 024 | 7 | _ | |a WOS:000454341200001 |2 WOS |
| 024 | 7 | _ | |a altmetric:53002192 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-07409 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Oeggl, Reinhard |0 P:(DE-Juel1)168384 |b 0 |
| 245 | _ | _ | |a Citrate as Cost-Efficient NADPH Regenerating Agent |
| 260 | _ | _ | |a Lausanne |c 2018 |b Frontiers Media |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1547471638_18910 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The economically efficient utilization of NADPH or NADH-dependent enzymes requires the regeneration of consumed reduction equivalents. This cofactor regeneration is classically done via an additional substrate, and if necessary enzyme. We now demonstrate an easy-to-apply cofactor regeneration approach, which can especially be used in screening applications. Simply by applying citrate to a buffer or directly using citrate/-phosphate buffer NADPH can be regenerated by native enzymes of the TCA cycle, practically present in all aerobic living organisms. Apart from viable-culturable cells, this regeneration approach can also be applied with lyophilized cells and even crude cell extracts. This is exemplarily shown for the synthesis of 1 phenylethanol from acetophenone with several oxidoreductases. The mechanism of NADPH regeneration by TCA cycle enzymes was further investigated by a transient isotopic labeling experiment feeding [1,5-13C]citrate. This revealed that the regeneration mechanism can further be optimized by genetic modification of two competing internal citrate metabolization pathways, the glyoxylate shunt and the glutamate dehydrogenase. |
| 536 | _ | _ | |a 581 - Biotechnology (POF3-581) |0 G:(DE-HGF)POF3-581 |c POF3-581 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Neumann, Timo |0 P:(DE-Juel1)169334 |b 1 |
| 700 | 1 | _ | |a Gätgens, Jochem |0 P:(DE-Juel1)129023 |b 2 |
| 700 | 1 | _ | |a Romano, Diego |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Noack, Stephan |0 P:(DE-Juel1)129050 |b 4 |
| 700 | 1 | _ | |a Rother, Dörte |0 P:(DE-Juel1)144643 |b 5 |e Corresponding author |
| 773 | _ | _ | |a 10.3389/fbioe.2018.00196 |g Vol. 6, p. 196 |0 PERI:(DE-600)2719493-0 |p 196 |t Frontiers in Bioengineering and Biotechnology |v 6 |y 2018 |x 2296-4185 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/858538/files/2018-0123124-4.pdf |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/858538/files/2018-0123124-4.pdf?subformat=pdfa |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/858538/files/fbioe-06-00196.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/858538/files/fbioe-06-00196.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:858538 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168384 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129023 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129050 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144643 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-581 |2 G:(DE-HGF)POF3-500 |v Biotechnology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|