001     858551
005     20240619091240.0
024 7 _ |a 10.1016/j.bios.2018.06.029
|2 doi
024 7 _ |a 0956-5663
|2 ISSN
024 7 _ |a 1873-4235
|2 ISSN
024 7 _ |a pmid:29982113
|2 pmid
024 7 _ |a WOS:000442191900055
|2 WOS
037 _ _ |a FZJ-2018-07421
082 _ _ |a 610
100 1 _ |a Zhang, Pengcheng
|0 P:(DE-Juel1)161287
|b 0
245 _ _ |a Nanoparticle stripe sensor for highly sensitive and selective detection of mercury ions
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545032303_1579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mercury and its compounds are emitted during industrial processes and are extremely harmful for eco systems and human health. Therefore, the detection of mercury ions (Hg2+) in our living and working environment is of great importance for the society and especially for the health of human beings. Here we demonstrate a proof of concept nanoparticle stripe sensor for highly sensitive and selective detection of Hg2+. This sensor is based on the changes of the charge transport between the neighboring nanoparticles in the nanoparticle stripe. The addition of Hg2+ induces a chelation between Hg2+ and carboxylic groups on the surface modification molecules and thus facilitates the charge transport, causing an increase of conductivity in the nanoparticle stripe. These nanoparticle stripes with a few layers in height and several micrometers in width possess large surface area, which increases their exposure to ions and improves the ability to detect Hg2+ at low concentrations. Besides, we studied the effect of molecular length on the sensitivity of the sensor. It is shown that the length of surface modification molecules is positively correlated with the sensitivity of the sensor. The fabricated devices exhibit a detection limit as low as 0.1 nM and a specific response towards Hg2+ ions.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lyu, Zhaozi
|0 P:(DE-Juel1)162320
|b 1
700 1 _ |a Viktorova, Jekaterina
|0 P:(DE-Juel1)169512
|b 2
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 3
700 1 _ |a Feng, Lingyan
|0 P:(DE-Juel1)157885
|b 4
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.bios.2018.06.029
|g Vol. 117, p. 450 - 456
|0 PERI:(DE-600)1496379-6
|p 450 - 456
|t Biosensors and bioelectronics
|v 117
|y 2018
|x 0956-5663
856 4 _ |u https://juser.fz-juelich.de/record/858551/files/1-s2.0-S0956566318304615-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858551/files/1-s2.0-S0956566318304615-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858551
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161287
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)161287
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162320
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)162320
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169512
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)169512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157885
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)157885
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128707
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOSENS BIOELECTRON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOSENS BIOELECTRON : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21