000858552 001__ 858552
000858552 005__ 20240619091240.0
000858552 0247_ $$2doi$$a10.1002/adhm.201800304
000858552 0247_ $$2ISSN$$a2192-2640
000858552 0247_ $$2ISSN$$a2192-2659
000858552 0247_ $$2ISSN$$a=
000858552 0247_ $$2ISSN$$aAdvanced
000858552 0247_ $$2ISSN$$aHealthcare
000858552 0247_ $$2ISSN$$aMaterials
000858552 0247_ $$2ISSN$$a(Internet)
000858552 0247_ $$2pmid$$apmid:30109770
000858552 0247_ $$2WOS$$aWOS:000446822600005
000858552 0247_ $$2altmetric$$aaltmetric:46766800
000858552 037__ $$aFZJ-2018-07422
000858552 082__ $$a610
000858552 1001_ $$0P:(DE-Juel1)168271$$aLiang, Yuanying$$b0$$ufzj
000858552 245__ $$aHigh Performance Flexible Organic Electrochemical Transistors for Monitoring Cardiac Action Potential
000858552 260__ $$aWeinheim$$bWiley-VCH$$c2018
000858552 3367_ $$2DRIVER$$aarticle
000858552 3367_ $$2DataCite$$aOutput Types/Journal article
000858552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545032243_1579
000858552 3367_ $$2BibTeX$$aARTICLE
000858552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858552 3367_ $$00$$2EndNote$$aJournal Article
000858552 520__ $$aFlexible and transparent electronic devices possess crucial advantages over conventional silicon based systems for bioelectronic applications since they are able to adapt to nonplanar surfaces, cause less chronic immunoreactivity, and facilitate easy optical inspection. Here, organic electrochemical transistors (OECTs) are embedded in a flexible matrix of polyimide to record cardiac action potentials. The wafer‐scale fabricated devices exhibit transconductances (12 mS V−1) and drain–source on‐to‐off current ratios (≈105) comparable to state of the art nonflexible and superior to other reported flexible OECTs. The transfer characteristics of the devices are preserved even after experiencing extremely high bending strain and harsh crumpling. A sub‐micrometer poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) layer results in a fast transport of ions between the electrolyte and the polymer channel characterized by a cut‐off frequency of 1200 Hz. Excellent device performance is proved by mapping the propagation of cardiac action potentials with high signal‐to‐noise ratio. These results demonstrate that the electrical performance of flexible OECTs can compete with hard‐material‐based OECTs and thus potentially be used for in vivo applications.
000858552 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000858552 588__ $$aDataset connected to CrossRef
000858552 7001_ $$0P:(DE-Juel1)166155$$aErnst, Mathis$$b1
000858552 7001_ $$0P:(DE-Juel1)161443$$aBrings, Fabian$$b2
000858552 7001_ $$0P:(DE-Juel1)159559$$aKireev, Dmitry$$b3$$ufzj
000858552 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b4$$ufzj
000858552 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5$$ufzj
000858552 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b6$$eCorresponding author
000858552 773__ $$0PERI:(DE-600)2645585-7$$a10.1002/adhm.201800304$$gVol. 7, no. 19, p. 1800304 -$$n19$$p1800304 -$$tAdvanced healthcare materials$$v7$$x2192-2640$$y2018
000858552 909CO $$ooai:juser.fz-juelich.de:858552$$pVDB
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168271$$aForschungszentrum Jülich$$b0$$kFZJ
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166155$$aForschungszentrum Jülich$$b1$$kFZJ
000858552 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)166155$$a ICS-8$$b1
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161443$$aForschungszentrum Jülich$$b2$$kFZJ
000858552 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161443$$a ICS-8$$b2
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159559$$aForschungszentrum Jülich$$b3$$kFZJ
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b4$$kFZJ
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000858552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b6$$kFZJ
000858552 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000858552 9141_ $$y2018
000858552 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858552 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858552 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV HEALTHC MATER : 2017
000858552 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858552 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858552 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858552 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858552 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV HEALTHC MATER : 2017
000858552 920__ $$lyes
000858552 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000858552 980__ $$ajournal
000858552 980__ $$aVDB
000858552 980__ $$aI:(DE-Juel1)ICS-8-20110106
000858552 980__ $$aUNRESTRICTED
000858552 981__ $$aI:(DE-Juel1)IBI-3-20200312