001     858552
005     20240619091240.0
024 7 _ |a 10.1002/adhm.201800304
|2 doi
024 7 _ |a 2192-2640
|2 ISSN
024 7 _ |a 2192-2659
|2 ISSN
024 7 _ |a =
|2 ISSN
024 7 _ |a Advanced
|2 ISSN
024 7 _ |a Healthcare
|2 ISSN
024 7 _ |a Materials
|2 ISSN
024 7 _ |a (Internet)
|2 ISSN
024 7 _ |a pmid:30109770
|2 pmid
024 7 _ |a WOS:000446822600005
|2 WOS
024 7 _ |a altmetric:46766800
|2 altmetric
037 _ _ |a FZJ-2018-07422
082 _ _ |a 610
100 1 _ |a Liang, Yuanying
|0 P:(DE-Juel1)168271
|b 0
|u fzj
245 _ _ |a High Performance Flexible Organic Electrochemical Transistors for Monitoring Cardiac Action Potential
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545032243_1579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Flexible and transparent electronic devices possess crucial advantages over conventional silicon based systems for bioelectronic applications since they are able to adapt to nonplanar surfaces, cause less chronic immunoreactivity, and facilitate easy optical inspection. Here, organic electrochemical transistors (OECTs) are embedded in a flexible matrix of polyimide to record cardiac action potentials. The wafer‐scale fabricated devices exhibit transconductances (12 mS V−1) and drain–source on‐to‐off current ratios (≈105) comparable to state of the art nonflexible and superior to other reported flexible OECTs. The transfer characteristics of the devices are preserved even after experiencing extremely high bending strain and harsh crumpling. A sub‐micrometer poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) layer results in a fast transport of ions between the electrolyte and the polymer channel characterized by a cut‐off frequency of 1200 Hz. Excellent device performance is proved by mapping the propagation of cardiac action potentials with high signal‐to‐noise ratio. These results demonstrate that the electrical performance of flexible OECTs can compete with hard‐material‐based OECTs and thus potentially be used for in vivo applications.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ernst, Mathis
|0 P:(DE-Juel1)166155
|b 1
700 1 _ |a Brings, Fabian
|0 P:(DE-Juel1)161443
|b 2
700 1 _ |a Kireev, Dmitry
|0 P:(DE-Juel1)159559
|b 3
|u fzj
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 4
|u fzj
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
|u fzj
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 6
|e Corresponding author
773 _ _ |a 10.1002/adhm.201800304
|g Vol. 7, no. 19, p. 1800304 -
|0 PERI:(DE-600)2645585-7
|n 19
|p 1800304 -
|t Advanced healthcare materials
|v 7
|y 2018
|x 2192-2640
909 C O |o oai:juser.fz-juelich.de:858552
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166155
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)166155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161443
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)161443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159559
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128707
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV HEALTHC MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV HEALTHC MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21