000858553 001__ 858553 000858553 005__ 20240619091240.0 000858553 0247_ $$2doi$$a10.1021/acsnano.8b05826 000858553 0247_ $$2ISSN$$a1936-0851 000858553 0247_ $$2ISSN$$a1936-086X 000858553 0247_ $$2pmid$$apmid:30335940 000858553 0247_ $$2WOS$$aWOS:000451789200062 000858553 0247_ $$2altmetric$$aaltmetric:50071101 000858553 037__ $$aFZJ-2018-07423 000858553 082__ $$a540 000858553 1001_ $$0P:(DE-HGF)0$$aGuo, Chenyang$$b0 000858553 245__ $$aMolecular Orbital Gating Surface-Enhanced Raman Scattering 000858553 260__ $$aWashington, DC$$bSoc.$$c2018 000858553 3367_ $$2DRIVER$$aarticle 000858553 3367_ $$2DataCite$$aOutput Types/Journal article 000858553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545035950_1577 000858553 3367_ $$2BibTeX$$aARTICLE 000858553 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000858553 3367_ $$00$$2EndNote$$aJournal Article 000858553 520__ $$aOne of the promising approaches to meet the urgent demand for further device miniaturization is to create functional devices using single molecules. Although various single-molecule electronic devices have been demonstrated recently, single-molecule optical devices which use external stimulations to control the optical response of a single molecule have rarely been reported. Here, we propose and demonstrate a field-effect Raman scattering (FERS) device with a single molecule, an optical counterpart to field-effect transistors (a key component of modern electronics). With our devices, the gap size between electrodes can be precisely adjusted at subangstrom accuracy to form single molecular junctions as well as to reach the maximum performance of Raman scattering via plasmonic enhancement. Based on this maximum performance, we demonstrated that the intensity of Raman scattering can be further enhanced by an additional ∼40% if the orbitals of the molecules bridged two electrodes were shifted by a gating voltage. This finding not only provides a method to increase the sensitivity of Raman scattering beyond the limit of plasmonic enhancement, but also makes it feasible to realize addressable functional FERS devices with a gate electrode array. 000858553 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0 000858553 588__ $$aDataset connected to CrossRef 000858553 7001_ $$0P:(DE-HGF)0$$aChen, Xing$$b1 000858553 7001_ $$0P:(DE-HGF)0$$aDing, Song-Yuan$$b2 000858553 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3 000858553 7001_ $$0P:(DE-HGF)0$$aWang, Qingling$$b4 000858553 7001_ $$0P:(DE-HGF)0$$aZhao, Zhikai$$b5 000858553 7001_ $$0P:(DE-HGF)0$$aNi, Lifa$$b6 000858553 7001_ $$0P:(DE-HGF)0$$aLiu, Haitao$$b7 000858553 7001_ $$00000-0001-5988-5219$$aLee, Takhee$$b8 000858553 7001_ $$0P:(DE-HGF)0$$aXu, Bingqian$$b9 000858553 7001_ $$00000-0002-5632-6355$$aXiang, Dong$$b10$$eCorresponding author 000858553 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.8b05826$$gVol. 12, no. 11, p. 11229 - 11235$$n11$$p11229 - 11235$$tACS nano$$v12$$x1936-086X$$y2018 000858553 8564_ $$uhttps://juser.fz-juelich.de/record/858553/files/acsnano.8b05826.pdf$$yRestricted 000858553 8564_ $$uhttps://juser.fz-juelich.de/record/858553/files/acsnano.8b05826.pdf?subformat=pdfa$$xpdfa$$yRestricted 000858553 909CO $$ooai:juser.fz-juelich.de:858553$$pVDB 000858553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ 000858553 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000858553 9141_ $$y2018 000858553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2017 000858553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000858553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000858553 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000858553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000858553 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000858553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000858553 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000858553 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000858553 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2017 000858553 920__ $$lyes 000858553 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0 000858553 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000858553 980__ $$ajournal 000858553 980__ $$aVDB 000858553 980__ $$aI:(DE-Juel1)ICS-8-20110106 000858553 980__ $$aI:(DE-82)080009_20140620 000858553 980__ $$aUNRESTRICTED 000858553 981__ $$aI:(DE-Juel1)IBI-3-20200312