001     858556
005     20240619091240.0
024 7 _ |a 10.1002/smll.201703815
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a pmid:29542239
|2 pmid
024 7 _ |a WOS:000430186600008
|2 WOS
024 7 _ |a altmetric:53052276
|2 altmetric
037 _ _ |a FZJ-2018-07426
082 _ _ |a 540
100 1 _ |a Zhao, Zhikai
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545052341_25555
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A straightforward method to generate both atomic‐scale sharp and atomic‐scale planar electrodes is reported. The atomic‐scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic‐scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal‐driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine‐linked molecular junctions can be enhanced ≈50% as the atomic‐scale sharp electrodes are used. However, the atomic‐scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite‐element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liu, Ran
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 2
700 1 _ |a Coppola, Maristella
|0 P:(DE-Juel1)159480
|b 3
700 1 _ |a Sun, Lu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kim, Youngsang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Chuankui
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ni, Lifa
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chen, Xing
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wang, Maoning
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Li, Zongliang
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lee, Takhee
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Xiang, Dong
|0 0000-0002-5632-6355
|b 12
|e Corresponding author
773 _ _ |a 10.1002/smll.201703815
|g Vol. 14, no. 15, p. 1703815 -
|0 PERI:(DE-600)2168935-0
|n 15
|p 1703815 -
|t Small
|v 14
|y 2018
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/858556/files/Zhao_et_al-2018-Small.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858556/files/Zhao_et_al-2018-Small.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858556
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159480
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)159480
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 0000-0002-5632-6355
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 12
|6 0000-0002-5632-6355
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SMALL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21