000858565 001__ 858565
000858565 005__ 20240619091240.0
000858565 0247_ $$2doi$$a10.1002/pssa.201700950
000858565 0247_ $$2ISSN$$a0031-8965
000858565 0247_ $$2ISSN$$a1521-396X
000858565 0247_ $$2ISSN$$a1862-6300
000858565 0247_ $$2ISSN$$a1862-6319
000858565 0247_ $$2WOS$$aWOS:000441005700017
000858565 037__ $$aFZJ-2018-07435
000858565 082__ $$a530
000858565 1001_ $$00000-0001-8749-5250$$aZhang, Pengcheng$$b0
000858565 245__ $$aElectronic Responses to Humidity in Monolayer and Multilayer AuNP Stripes Fabricated by Convective Self-Assembly
000858565 260__ $$aWeinheim$$bWiley-VCH$$c2018
000858565 3367_ $$2DRIVER$$aarticle
000858565 3367_ $$2DataCite$$aOutput Types/Journal article
000858565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545052576_28994
000858565 3367_ $$2BibTeX$$aARTICLE
000858565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858565 3367_ $$00$$2EndNote$$aJournal Article
000858565 520__ $$aNanoparticle devices employing electrical transduction mechanisms have been developed for various fields of application such as strain sensing, chemical detection, photo detectors, solar cells, memory devices, and so on. Since most devices are exposed and operated at ambient conditions, the humidity poses a problem, influencing their electrical properties via the interaction between the water molecules and NP materials. Here, the fabrication of multilayer and monolayer AuNP stripes with different dominating charge transport regimes is reported and their electronic responses to humidity are studied. It is shown that the humidity‐dependent electronic response is strongly correlated with the morphology and electron transport regimes in the AuNP stripes. Due to the differences in AuNP arrangements and the resulting dominant charge transport regime, the multilayer and mono layer AuNP stripes response differently to the humidity. This work reveals the possible mechanism accounting for their different responses and can help the development of high performance nanoparticle‐based devices.
000858565 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000858565 588__ $$aDataset connected to CrossRef
000858565 7001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b1
000858565 7001_ $$0P:(DE-Juel1)169512$$aViktorova, Jekaterina$$b2
000858565 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3
000858565 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4$$eCorresponding author
000858565 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201700950$$gVol. 215, no. 15, p. 1700950 -$$n15$$p1700950 -$$tPhysica status solidi / A Applied research A$$v215$$x1862-6300$$y2018
000858565 8564_ $$uhttps://juser.fz-juelich.de/record/858565/files/pssa.201700950.pdf$$yRestricted
000858565 8564_ $$uhttps://juser.fz-juelich.de/record/858565/files/pssa.201700950.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858565 909CO $$ooai:juser.fz-juelich.de:858565$$pVDB
000858565 9101_ $$0I:(DE-588b)5008462-8$$60000-0001-8749-5250$$aForschungszentrum Jülich$$b0$$kFZJ
000858565 9101_ $$0I:(DE-HGF)0$$60000-0001-8749-5250$$a ICS-8$$b0
000858565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich$$b1$$kFZJ
000858565 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161308$$a ICS-8$$b1
000858565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169512$$aForschungszentrum Jülich$$b2$$kFZJ
000858565 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)169512$$a ICS-8$$b2
000858565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
000858565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
000858565 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000858565 9141_ $$y2018
000858565 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858565 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858565 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858565 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858565 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858565 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858565 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858565 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858565 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858565 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2017
000858565 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858565 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858565 920__ $$lyes
000858565 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000858565 980__ $$ajournal
000858565 980__ $$aVDB
000858565 980__ $$aI:(DE-Juel1)ICS-8-20110106
000858565 980__ $$aUNRESTRICTED
000858565 981__ $$aI:(DE-Juel1)IBI-3-20200312