Hauptseite > Publikationsdatenbank > Electronic Responses to Humidity in Monolayer and Multilayer AuNP Stripes Fabricated by Convective Self-Assembly > print |
001 | 858565 | ||
005 | 20240619091240.0 | ||
024 | 7 | _ | |a 10.1002/pssa.201700950 |2 doi |
024 | 7 | _ | |a 0031-8965 |2 ISSN |
024 | 7 | _ | |a 1521-396X |2 ISSN |
024 | 7 | _ | |a 1862-6300 |2 ISSN |
024 | 7 | _ | |a 1862-6319 |2 ISSN |
024 | 7 | _ | |a WOS:000441005700017 |2 WOS |
037 | _ | _ | |a FZJ-2018-07435 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zhang, Pengcheng |0 0000-0001-8749-5250 |b 0 |
245 | _ | _ | |a Electronic Responses to Humidity in Monolayer and Multilayer AuNP Stripes Fabricated by Convective Self-Assembly |
260 | _ | _ | |a Weinheim |c 2018 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1545052576_28994 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Nanoparticle devices employing electrical transduction mechanisms have been developed for various fields of application such as strain sensing, chemical detection, photo detectors, solar cells, memory devices, and so on. Since most devices are exposed and operated at ambient conditions, the humidity poses a problem, influencing their electrical properties via the interaction between the water molecules and NP materials. Here, the fabrication of multilayer and monolayer AuNP stripes with different dominating charge transport regimes is reported and their electronic responses to humidity are studied. It is shown that the humidity‐dependent electronic response is strongly correlated with the morphology and electron transport regimes in the AuNP stripes. Due to the differences in AuNP arrangements and the resulting dominant charge transport regime, the multilayer and mono layer AuNP stripes response differently to the humidity. This work reveals the possible mechanism accounting for their different responses and can help the development of high performance nanoparticle‐based devices. |
536 | _ | _ | |a 523 - Controlling Configuration-Based Phenomena (POF3-523) |0 G:(DE-HGF)POF3-523 |c POF3-523 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dai, Yang |0 P:(DE-Juel1)161308 |b 1 |
700 | 1 | _ | |a Viktorova, Jekaterina |0 P:(DE-Juel1)169512 |b 2 |
700 | 1 | _ | |a Offenhäusser, Andreas |0 P:(DE-Juel1)128713 |b 3 |
700 | 1 | _ | |a Mayer, Dirk |0 P:(DE-Juel1)128707 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1002/pssa.201700950 |g Vol. 215, no. 15, p. 1700950 - |0 PERI:(DE-600)1481091-8 |n 15 |p 1700950 - |t Physica status solidi / A Applied research A |v 215 |y 2018 |x 1862-6300 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858565/files/pssa.201700950.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858565/files/pssa.201700950.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:858565 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 0000-0001-8749-5250 |
910 | 1 | _ | |a ICS-8 |0 I:(DE-HGF)0 |b 0 |6 0000-0001-8749-5250 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161308 |
910 | 1 | _ | |a ICS-8 |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)161308 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169512 |
910 | 1 | _ | |a ICS-8 |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)169512 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128707 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |2 G:(DE-HGF)POF3-500 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS STATUS SOLIDI A : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-8-20110106 |k ICS-8 |l Bioelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-8-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|