000858585 001__ 858585
000858585 005__ 20240708132837.0
000858585 0247_ $$2doi$$a10.1016/j.matlet.2018.11.109
000858585 0247_ $$2ISSN$$a0167-577X
000858585 0247_ $$2ISSN$$a1873-4979
000858585 0247_ $$2WOS$$aWOS:000454609700041
000858585 037__ $$aFZJ-2018-07455
000858585 082__ $$a670
000858585 1001_ $$0P:(DE-HGF)0$$aDaudt, N. F.$$b0$$eCorresponding author
000858585 245__ $$aManufacturing of Ti-10Nb based metal sheets by tape casting
000858585 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000858585 3367_ $$2DRIVER$$aarticle
000858585 3367_ $$2DataCite$$aOutput Types/Journal article
000858585 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552996834_14319
000858585 3367_ $$2BibTeX$$aARTICLE
000858585 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858585 3367_ $$00$$2EndNote$$aJournal Article
000858585 520__ $$aSheets from Ti alloys like Ti-Nb are attractive as structural and functional components for applications in aerospace, biomedicine or electrochemical devices. Tape casting is a cost-effective production method, which has been widely used for production of ceramic sheets. Ti-Nb alloys are (α + β)-type alloys, which have the potential for replacing established Ti-6Al-4V alloy in specific cases, e.g. due to not containing toxic elements like vanadium. In the present work, tape casting was introduced as novel strategy for production of thin Ti-Nb sheets. Elemental Ti and Nb powders were used for production of Ti-10wt%Nb alloy sheets with a thickness of around 350 µm. Sintering behavior and microstructure were investigated by scanning electron microscopy (SEM), chemical analysis and X-ray diffraction. A homogeneous (α + β)-type alloy with low residual porosity of ca. 1.5 vol% was achieved by sintering at 1300 °C.
000858585 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000858585 588__ $$aDataset connected to CrossRef
000858585 7001_ $$0P:(DE-Juel1)168138$$aHackemüller, F. J.$$b1$$ufzj
000858585 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b2$$ufzj
000858585 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2018.11.109$$gVol. 237, p. 161 - 164$$p161 - 164$$tMaterials letters$$v237$$x0167-577X$$y2019
000858585 909CO $$ooai:juser.fz-juelich.de:858585$$pVDB
000858585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168138$$aForschungszentrum Jülich$$b1$$kFZJ
000858585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000858585 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000858585 9141_ $$y2019
000858585 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER LETT : 2017
000858585 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858585 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858585 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858585 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858585 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858585 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858585 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858585 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858585 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858585 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000858585 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858585 920__ $$lyes
000858585 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000858585 980__ $$ajournal
000858585 980__ $$aVDB
000858585 980__ $$aI:(DE-Juel1)IEK-1-20101013
000858585 980__ $$aUNRESTRICTED
000858585 981__ $$aI:(DE-Juel1)IMD-2-20101013