000858586 001__ 858586
000858586 005__ 20240619083548.0
000858586 0247_ $$2doi$$a10.1039/C7SM02019H
000858586 0247_ $$2ISSN$$a1744-683X
000858586 0247_ $$2ISSN$$a1744-6848
000858586 0247_ $$2pmid$$apmid:29199754
000858586 0247_ $$2WOS$$aWOS:000418377300009
000858586 0247_ $$2altmetric$$aaltmetric:29592253
000858586 037__ $$aFZJ-2018-07456
000858586 082__ $$a530
000858586 1001_ $$0P:(DE-Juel1)164358$$aDas, Shibananda$$b0
000858586 245__ $$aClustering and dynamics of particles in dispersions with competing interactions: theory and simulation
000858586 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2018
000858586 3367_ $$2DRIVER$$aarticle
000858586 3367_ $$2DataCite$$aOutput Types/Journal article
000858586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569412480_25779
000858586 3367_ $$2BibTeX$$aARTICLE
000858586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858586 3367_ $$00$$2EndNote$$aJournal Article
000858586 520__ $$aDispersions of particles with short-range attractive and long-range repulsive interactions exhibit rich equilibrium microstructures and a complex phase behavior. We present theoretical and simulation results for structural and, in particular, short-time diffusion properties of a colloidal model system with such interactions, both in the dispersed-fluid and equilibrium-cluster phase regions. The particle interactions are described by a generalized Lennard-Jones-Yukawa pair potential. For the theoretical-analytical description, we apply the hybrid Beenakker–Mazur pairwise additivity (BM-PA) scheme. The static structure factor input to this scheme is calculated self-consistently using the Zerah-Hansen integral equation theory approach. In the simulations, a hybrid simulation method is adopted, combing molecular dynamics simulations of colloids with the multiparticle collision dynamics approach for the fluid, which fully captures hydrodynamic interactions. The comparison of our theoretical and simulation results confirms the high accuracy of the BM-PA scheme for dispersed-fluid phase systems. For particle attraction strengths exceeding a critical value, our simulations yield an equilibrium cluster phase. Calculations of the mean lifetime of the appearing clusters and the comparison with the analytical prediction of the dissociation time of an isolated particle pair reveal quantitative differences pointing to the importance of many-particle hydrodynamic interactions for the cluster dynamics. The cluster lifetime in the equilibrium-cluster phase increases far stronger with increasing attraction strength than that in the dispersed-fluid phase. Moreover, significant changes in the cluster shapes are observed in the course of time. Hence, an equilibrium-cluster dispersion cannot be treated dynamically as a system of permanent rigid bodies.
000858586 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000858586 588__ $$aDataset connected to CrossRef
000858586 7001_ $$0P:(DE-Juel1)156528$$aRiest, Jonas$$b1
000858586 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author
000858586 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author
000858586 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b4$$eCorresponding author
000858586 7001_ $$0P:(DE-Juel1)130858$$aNägele, Gerhard$$b5
000858586 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C7SM02019H$$gVol. 14, no. 1, p. 92 - 103$$n1$$p92 - 103$$tSoft matter$$v14$$x1744-6848$$y2018
000858586 8564_ $$uhttps://juser.fz-juelich.de/record/858586/files/c7sm02019h.pdf$$yRestricted
000858586 8564_ $$uhttps://juser.fz-juelich.de/record/858586/files/c7sm02019h.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858586 909CO $$ooai:juser.fz-juelich.de:858586$$pVDB$$qdnbdelivery
000858586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017
000858586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858586 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858586 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858586 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858586 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000858586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858586 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000858586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858586 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858586 9141_ $$y2018
000858586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164358$$aForschungszentrum Jülich$$b0$$kFZJ
000858586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000858586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ
000858586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b4$$kFZJ
000858586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b5$$kFZJ
000858586 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000858586 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000858586 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000858586 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x2
000858586 980__ $$ajournal
000858586 980__ $$aVDB
000858586 980__ $$aI:(DE-Juel1)IAS-2-20090406
000858586 980__ $$aI:(DE-Juel1)ICS-2-20110106
000858586 980__ $$aI:(DE-Juel1)ICS-3-20110106
000858586 980__ $$aUNRESTRICTED
000858586 981__ $$aI:(DE-Juel1)IBI-5-20200312
000858586 981__ $$aI:(DE-Juel1)IAS-2-20090406