000858589 001__ 858589
000858589 005__ 20250701125849.0
000858589 0247_ $$2doi$$a10.1016/j.physb.2018.01.016
000858589 0247_ $$2ISSN$$a0921-4526
000858589 0247_ $$2ISSN$$a1873-2135
000858589 0247_ $$2WOS$$aWOS:000455012800077
000858589 037__ $$aFZJ-2018-07459
000858589 082__ $$a530
000858589 1001_ $$0P:(DE-Juel1)164368$$aCronert, T.$$b0$$eCorresponding author
000858589 245__ $$aCompact and easy to use mesitylene cold neutron moderator for CANS
000858589 260__ $$aAmsterdam$$bElsevier$$c2018
000858589 3367_ $$2DRIVER$$aarticle
000858589 3367_ $$2DataCite$$aOutput Types/Journal article
000858589 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553260603_19103
000858589 3367_ $$2BibTeX$$aARTICLE
000858589 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858589 3367_ $$00$$2EndNote$$aJournal Article
000858589 520__ $$aOrganic aromatic cold neutron moderators - like mesitylene () - are often much more convenient to handle and to commission than cryogenic methane or ortho/para hydrogen moderators. Although this benefit comes at the cost of reduced brilliance, mesitylene moderators are suited to enable cold neutron applications at sources where a complex traditional cold moderator system is not feasible. Developing the Jülich High Brilliance neutron Source (HBS) project, we have investigated the use of such a low-dimensional mesitylene moderator with MCNP and ANSYS simulations and validated the simulations with experiments at TU Dresden's AKR-2 reactor. Here we will document the feasibility, advantages and drawbacks of such a system and give an outlook on future optimization potentials.
000858589 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000858589 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000858589 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000858589 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000858589 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000858589 588__ $$aDataset connected to CrossRef
000858589 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000858589 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000858589 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000858589 7001_ $$0P:(DE-HGF)0$$aDabruck, J. P.$$b1
000858589 7001_ $$0P:(DE-HGF)0$$aKlaus, M.$$b2
000858589 7001_ $$0P:(DE-Juel1)131055$$aZakalek, P.$$b3
000858589 7001_ $$0P:(DE-Juel1)169952$$aDoege, Paul$$b4
000858589 7001_ $$0P:(DE-Juel1)169802$$aBaggemann, J.$$b5
000858589 7001_ $$0P:(DE-Juel1)143938$$aBeßler, Y.$$b6
000858589 7001_ $$0P:(DE-Juel1)133642$$aButzek, M.$$b7
000858589 7001_ $$0P:(DE-Juel1)130928$$aRücker, U.$$b8
000858589 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, T.$$b9
000858589 7001_ $$0P:(DE-Juel1)130386$$aNabbi, R.$$b10
000858589 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b11
000858589 7001_ $$0P:(DE-HGF)0$$aLange, C.$$b12
000858589 773__ $$0PERI:(DE-600)1466579-7$$a10.1016/j.physb.2018.01.016$$gVol. 551, p. 377 - 380$$p377 - 380$$tPhysica / B Condensed matter B$$v551$$x0921-4526$$y2018
000858589 8564_ $$uhttps://juser.fz-juelich.de/record/858589/files/1-s2.0-S0921452618300255-main.pdf$$yRestricted
000858589 8564_ $$uhttps://juser.fz-juelich.de/record/858589/files/1-s2.0-S0921452618300255-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858589 909CO $$ooai:juser.fz-juelich.de:858589$$pVDB$$pVDB:MLZ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164368$$aForschungszentrum Jülich$$b0$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b3$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169952$$aForschungszentrum Jülich$$b4$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169802$$aForschungszentrum Jülich$$b5$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143938$$aForschungszentrum Jülich$$b6$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133642$$aForschungszentrum Jülich$$b7$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b8$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b9$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130386$$aForschungszentrum Jülich$$b10$$kFZJ
000858589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b11$$kFZJ
000858589 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000858589 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000858589 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000858589 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000858589 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000858589 9141_ $$y2018
000858589 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858589 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858589 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858589 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA B : 2017
000858589 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858589 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858589 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858589 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858589 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858589 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858589 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858589 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858589 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858589 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000858589 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000858589 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000858589 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000858589 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x4
000858589 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x5
000858589 980__ $$ajournal
000858589 980__ $$aVDB
000858589 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000858589 980__ $$aI:(DE-Juel1)PGI-4-20110106
000858589 980__ $$aI:(DE-82)080009_20140620
000858589 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000858589 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000858589 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000858589 980__ $$aUNRESTRICTED
000858589 981__ $$aI:(DE-Juel1)ITE-20250108
000858589 981__ $$aI:(DE-Juel1)JCNS-2-20110106