000858609 001__ 858609
000858609 005__ 20210130000027.0
000858609 0247_ $$2doi$$a10.1021/acs.jpcb.8b07901
000858609 0247_ $$2ISSN$$a1089-5647
000858609 0247_ $$2ISSN$$a1520-5207
000858609 0247_ $$2ISSN$$a1520-6106
000858609 0247_ $$2pmid$$apmid:30499666
000858609 0247_ $$2WOS$$aWOS:000454751400016
000858609 0247_ $$2altmetric$$aaltmetric:52663988
000858609 0247_ $$2Handle$$a2128/22860
000858609 037__ $$aFZJ-2018-07469
000858609 082__ $$a530
000858609 1001_ $$0P:(DE-Juel1)151224$$aMyung, Jin Suk$$b0$$eCorresponding author
000858609 245__ $$aWeak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions
000858609 260__ $$aWashington, DC$$bSoc.66306$$c2018
000858609 3367_ $$2DRIVER$$aarticle
000858609 3367_ $$2DataCite$$aOutput Types/Journal article
000858609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547825203_26450
000858609 3367_ $$2BibTeX$$aARTICLE
000858609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858609 3367_ $$00$$2EndNote$$aJournal Article
000858609 520__ $$aThe effect of a nonspherical particle shape on the dynamics in crowded solutions presents a significant challenge for a comprehensive understanding of interaction and structural relaxation in biological and soft matter. We report that small deviations from a spherical shape induce a nonmonotonic contribution to the crowding effect on the short-time cage diffusion compared with spherical systems, using molecular dynamics simulations with mesoscale hydrodynamics of a multiparticle collision dynamics fluid in semidilute systems with volume fractions smaller than 0.35. We show that the nonmonotonic effect due to anisotropy is caused by the combination of a reduced relative mobility over the entire concentration range and a looser and less homogeneous cage packing of nonspherical particles. Our finding stresses that nonsphericity induces new complexity, which cannot be accounted for in effective sphere models, and is of great interest in applications such as formulations as well as for the fundamental understanding of soft matter in general and crowding effects in living cells in particular.
000858609 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000858609 588__ $$aDataset connected to CrossRef
000858609 7001_ $$00000-0001-5106-4360$$aRoosen-Runge, Felix$$b1
000858609 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author
000858609 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author
000858609 7001_ $$00000-0002-2790-8831$$aSchurtenberger, Peter$$b4
000858609 7001_ $$00000-0003-3310-3412$$aStradner, Anna$$b5
000858609 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.8b07901$$gp. acs.jpcb.8b07901$$n51$$p12396-12402$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v122$$x1520-5207$$y2018
000858609 8564_ $$uhttps://juser.fz-juelich.de/record/858609/files/acs.jpcb.8b07901.pdf$$yRestricted
000858609 8564_ $$uhttps://juser.fz-juelich.de/record/858609/files/acs.jpcb.8b07901.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858609 8564_ $$uhttps://juser.fz-juelich.de/record/858609/files/ellip.pdf$$yPublished on 2018-11-30. Available in OpenAccess from 2019-11-30.
000858609 8564_ $$uhttps://juser.fz-juelich.de/record/858609/files/ellip.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-30. Available in OpenAccess from 2019-11-30.
000858609 909CO $$ooai:juser.fz-juelich.de:858609$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000858609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ
000858609 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000858609 9141_ $$y2018
000858609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858609 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858609 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000858609 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858609 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858609 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858609 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000858609 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858609 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000858609 980__ $$ajournal
000858609 980__ $$aVDB
000858609 980__ $$aUNRESTRICTED
000858609 980__ $$aI:(DE-Juel1)IAS-2-20090406
000858609 9801_ $$aFullTexts