001     858612
005     20240610115756.0
024 7 _ |a 10.1002/slct.201800638
|2 doi
024 7 _ |a WOS:000431625900060
|2 WOS
037 _ _ |a FZJ-2018-07472
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Rostek, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Wet-chemical synthesis of Pd-Au core-shell nanopaticles (8nm): From nanostructure to biological properties
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547135621_3109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pd−Au core‐shell nanoparticles with a palladium core (diameter about 5.5 nm) and a gold shell (thickness about 1.7 nm) were wet‐chemically synthesized in an easy water‐based one‐pot synthesis by sequential reduction of Pd2+ and Au3+ with glucose in the presence of poly(N‐vinylpyrrolidone) (PVP). The metals are present in about equal amounts (molar ratio Pd:Au about 2:1) with a clear separation between core and shell. The reaction was monitored in‐situ by small‐angle X‐ray scattering (SAXS), showing the initial growth of the palladium seeds, followed by the epitactic formation of the gold shell. The core‐shell character of the particles was confirmed by high‐resolution scanning transmission electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). However, X‐ray powder diffraction with Rietveld analysis indicated a partial alloying, i. e. a gradual border between the two metals. Cell culture experiments showed no adverse effects on human mesenchymal stem cells (hMSCs) with a Pd−Au nanoparticle concentration (computed as total metal) up to 50 μg mL−1 after 24 h incubation, i. e. the particles can be considered as biologically harmless, even after unintended human exposure.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a Breisch, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Loza, Kateryna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Garcia, P. R. A. F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Oiliveira, C. L. P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Prymak, O.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 6
700 1 _ |a Köller, Maximilian
|0 P:(DE-Juel1)173961
|b 7
700 1 _ |a Sengstock, C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Epple, M.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1002/slct.201800638
|0 PERI:(DE-600)2844262-3
|n 17
|p 4994 - 5001
|t ChemistrySelect
|v 3
|y 2018
|x 2365-6549
909 C O |p VDB
|o oai:juser.fz-juelich.de:858612
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMISTRYSELECT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21