000858654 001__ 858654
000858654 005__ 20240712112820.0
000858654 0247_ $$2doi$$a10.1111/jace.16417
000858654 0247_ $$2ISSN$$a0002-7820
000858654 0247_ $$2ISSN$$a1551-2916
000858654 0247_ $$2WOS$$aWOS:000479010400038
000858654 037__ $$aFZJ-2018-07508
000858654 041__ $$aEnglish
000858654 082__ $$a660
000858654 1001_ $$0P:(DE-HGF)0$$aOldenkotte, Moritz$$b0
000858654 245__ $$aInfluence of PbO stoichiometry on the properties of PZT ceramics and multilayer actuators
000858654 260__ $$aWesterville, Ohio$$bSoc.$$c2019
000858654 3367_ $$2DRIVER$$aarticle
000858654 3367_ $$2DataCite$$aOutput Types/Journal article
000858654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565690013_4779
000858654 3367_ $$2BibTeX$$aARTICLE
000858654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858654 3367_ $$00$$2EndNote$$aJournal Article
000858654 520__ $$aLead‐oxide stoichiometry of lead‐zirconate‐titanate (PZT) ceramics and multilayer actuators is a critical issue for fabrication and performance. During sintering, the high vapor pressure and the corresponding volatility of lead oxide (PbO) require a careful design of sintering setup and parameters, as both may significantly impact on the PbO content in ceramics and devices. In order to investigate the effects of PbO stoichiometry, PZT compositions with different PbO contents have been synthesized and were sintered under varying temperature conditions and sintering setups. Structure and microstructure of the material was characterized using X‐ray diffraction and scanning electron microscopy (SEM). Dielectric properties and high field strain behavior were analyzed with respect to their relation to PbO content and grain size. Corresponding experiments with multilayer actuators were carried out, whereby the PbO content was varied by controlling the sintering atmosphere. The results indicate that there is a pronounced correlation between PbO content, structure and high field strain in both, PZT ceramics, and multilayer actuators.
000858654 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000858654 588__ $$aDataset connected to CrossRef
000858654 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b1$$ufzj
000858654 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
000858654 7001_ $$0P:(DE-HGF)0$$aSchoenau, Kristin$$b3
000858654 7001_ $$0P:(DE-HGF)0$$aKuehlein, Marc$$b4
000858654 7001_ $$0P:(DE-HGF)0$$aBernard, Thilo$$b5
000858654 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b6
000858654 7001_ $$0P:(DE-HGF)0$$aHinterstein, Manuel$$b7$$eCorresponding author
000858654 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.16417$$gVol. 102, no. 9, p. 5401 - 5414$$n9$$p5401 - 5414$$tJournal of the American Ceramic Society$$v102$$x0002-7820$$y2019
000858654 8564_ $$uhttps://juser.fz-juelich.de/record/858654/files/Oldenkotte_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf$$yRestricted
000858654 8564_ $$uhttps://juser.fz-juelich.de/record/858654/files/Oldenkotte_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858654 909CO $$ooai:juser.fz-juelich.de:858654$$pVDB
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aSIA abrasives $$b0
000858654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b1$$kFZJ
000858654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000858654 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Robert Bosch GmbH$$b3
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRobert Bosch GmbH $$b4
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRobert Bosch GmbH $$b5
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aIAM-KWT, KIT Karlsruhe $$b6
000858654 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aIAM, KIT Karlsruhe $$b7
000858654 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000858654 9141_ $$y2019
000858654 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2017
000858654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858654 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858654 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858654 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858654 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858654 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858654 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000858654 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858654 920__ $$lyes
000858654 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000858654 980__ $$ajournal
000858654 980__ $$aVDB
000858654 980__ $$aI:(DE-Juel1)IEK-9-20110218
000858654 980__ $$aUNRESTRICTED
000858654 981__ $$aI:(DE-Juel1)IET-1-20110218