001     858654
005     20240712112820.0
024 7 _ |a 10.1111/jace.16417
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a WOS:000479010400038
|2 WOS
037 _ _ |a FZJ-2018-07508
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Oldenkotte, Moritz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of PbO stoichiometry on the properties of PZT ceramics and multilayer actuators
260 _ _ |a Westerville, Ohio
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565690013_4779
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lead‐oxide stoichiometry of lead‐zirconate‐titanate (PZT) ceramics and multilayer actuators is a critical issue for fabrication and performance. During sintering, the high vapor pressure and the corresponding volatility of lead oxide (PbO) require a careful design of sintering setup and parameters, as both may significantly impact on the PbO content in ceramics and devices. In order to investigate the effects of PbO stoichiometry, PZT compositions with different PbO contents have been synthesized and were sintered under varying temperature conditions and sintering setups. Structure and microstructure of the material was characterized using X‐ray diffraction and scanning electron microscopy (SEM). Dielectric properties and high field strain behavior were analyzed with respect to their relation to PbO content and grain size. Corresponding experiments with multilayer actuators were carried out, whereby the PbO content was varied by controlling the sintering atmosphere. The results indicate that there is a pronounced correlation between PbO content, structure and high field strain in both, PZT ceramics, and multilayer actuators.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 1
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 2
|u fzj
700 1 _ |a Schoenau, Kristin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kuehlein, Marc
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bernard, Thilo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann, Michael J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hinterstein, Manuel
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1111/jace.16417
|g Vol. 102, no. 9, p. 5401 - 5414
|0 PERI:(DE-600)2008170-4
|n 9
|p 5401 - 5414
|t Journal of the American Ceramic Society
|v 102
|y 2019
|x 0002-7820
856 4 _ |u https://juser.fz-juelich.de/record/858654/files/Oldenkotte_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858654/files/Oldenkotte_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858654
|p VDB
910 1 _ |a SIA abrasives
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a Robert Bosch GmbH
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Robert Bosch GmbH
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Robert Bosch GmbH
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a IAM-KWT, KIT Karlsruhe
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a IAM, KIT Karlsruhe
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21