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Abstract

The installation and operation of distributed energy resources in the form of photo-

voltaics, co-generation units, or batteries, and the electrification of the heat supply

are seen as promising options to reduce greenhouse gas emissions of residential

buildings. Nevertheless, their uptake significantly changes the interaction of the

residential building stock with the electricity grid and the centralized supply infras-

tructure and questions their current design. Therefore, the objective of this work is

to derive the future residential electricity grid load spatially and temporally resolved

to define a decision basis for future grid and market designs.

In order to generally predict the future structure, design and operation of residen-

tial supply systems and efficiency measures, a Mixed-Integer Linear Program is

introduced that minimizes the total annual energy supply cost of a single buildings

since the technology adoption is mainly economically driven. The minimization of

the greenhouse gas footprint can be added as second objective. The optimization

model accounts for the temporal occupant activities, their related device usage,

tolerated room temperature levels, limited roof capacities, or different levels of ad-

ditional insulation. Since the variety of investment and operation options make the

model computationally challenging, clustering based times series aggregation tech-

niques are developed and introduced to reduce the complexity of the model. A novel

aggregation algorithm based on Mixed-Integer Quadratic Programs is introduced to

scale the technology adoption and operation from the single building perspective to

a nationwide scope by creating a spatially resolved archetype building stock from

Census data and building databases. 200 archetype buildings are concluded to

sufficiently represent the diversity of building types in the different municipalities in

Germany.

These archetype buildings are optimized for the weather years 2010 until 2015 and

the results are validated to residential energy consumption value from public statis-

tics, whereby the regional demand impact of different weather years is illustrated.

Afterwards, a scenario frame for 2050 is defined and the buildings are optimized to

reach a carbon neutral building stock with minimal cost. As result, at least 130 GW

of photovoltaic are deployed and above 90 TWh/a of the generated electricity are

used for self-consumption in the residential buildings. Nevertheless, the total de-

mand for electricity significantly increases since 17 to 26 GWel of heat pumps are

installed to replace combustion boilers, while only 30 % of space heat are saved

by refurbishment measures. The spatially resolved archetype building stock allows

new insights: The urban areas can compensate the increasing electricity demand

by efficient co-generation units, e.g. in form of fuel cells. Nevertheless, those are

not cost efficient in the rural areas where the photovoltaic generation and the heat

pump demand temporally disjoin, resulting in a doubling of the peak electricity load

in the winter hours.





Kurzfassung

Zur Erreichung der Treibhausgasreduktionsziele im Haushaltssektor muss

signifikant die Energieversorgungsstruktur der Wohngebäude verändert wer-

den. Neben Einsparmaßnamen wird dabei vermehrt auf dezentrale Ver-

sorgungslösungen wie KWK-Anlagen, Photovoltaik und Batteriespeichersysteme

zu Eigenversorgung gesetzt. Des Weiteren werden klassische Kessel durch

Wärmepumpen ersetzt, welche im Rahmen der Sektorkopplung Raumwärme

mit Hilfe erneuerbaren Stroms bereitstellen können. Dieser Wandel der

Gebäudeversorgungsstruktur verändert signifikant die netzseitige Last der

Wohngebäude und die Nachfrage nach zentraler Versorgungstechnologie. Da-

her ist das Ziel dieser Arbeit, die zukünftige Last der Wohngebäude zeitlich und

räumlich aufgelöst abzuschätzen, um eine Grundlage für zukünftige Netzplanun-

gen zu schaffen.

Dazu wird ein neues Bottom-Up Modell entwickelt, welches als Gemischt-

Ganzzahliges Lineares Optimierungsprogramm konzipiert ist. Das Modell optimiert

die Struktur und den Betrieb der Energieversorgung und den Einsatz möglicher

Effizienzmaßnahmen einzelner Wohngebäude unter der Prämisse von Kosten-

effizienz. Als weitere Zielfunktion kann die Minimierung der Treibhausgasemis-

sionen hinzugefügt werden. Das Modell berücksichtigt das zeitliche Verhalten

der Bewohner, die Benutzung von elektrischen Geräten, dynamische Temper-

aturtoleranzen in den Wohnräumen, limitierte Dachflächen für Solarinstallatio-

nen, sowie verschiedene Sanierungstiefen der jeweiligen Gebäudehüllen. Die

große Anzahl an Entscheidungsvariablen und deren Interaktion machen das Mod-

ell rechenintensiv, weshalb Methoden zur Zeitreihenaggregation eingeführt wer-

den, um die Komplexität des Modells zu reduzieren. Um die Ergebnisse der

Einzelgebäude auf eine nationale Perspektive hoch zu skalieren, wird ein Ag-

gregationsalgorithmus eingeführt, der mit Hilfe von quadratischen Optimierungen

Typgebäude aus Zensusdaten und vorhanden Gebäudedatenbanken erstellt. In-

sgesamt ist festzustellen, dass 200 Typgebäude in der Lage sind die Vielfalt des

Gebäudebestandes in Deutschland auf Gemeindeebene darzustellen.

Die Typgebäude werden mit dem Optimierungsmodell zunächst für die Jahre

2010 bis 2015 optimiert und die resultierende Endenergienachfrage wird mit

den berichteten aggregierten Energienachfragen der Bundesregierung validiert.

Zur Bestimmung der zukünftigen Last wird ein Szenario-Rahmen für den

Wohngebäudesektor im Jahr 2050 definiert und ein kostenminimaler und klima-

neutraler Gebäudebestand berechnet. Dabei werden über 130 GW Aufdach-

Photovoltaik installiert, welche primär zum Eigenverbrauch von 90 TWh/a

Photovoltaik-Strom innerhalb der Gebäude genutzt werden. Die absolute Strom-

nachfrage der Wohngebäude steigt signifikant an, da 17 bis 26 GW an elektrischer

Wärmepumpenleistung installiert und betrieben werden. Sanierungsmaßnamen

und Neubauten führen nur zu 30 % Einsparung bei der Raumwärme. Die räumliche

Auflösung des Gebäudebestandes zeigt, dass die urbanen Gebiete die steigende

Stromnachfrage durch effiziente KWK-Anlagen in Form von Brennstoffzellen kom-

pensieren können. Diese sind jedoch nicht kosteneffizient in ländlichen Regionen.

Dort fallen die Erzeugung des Photovoltaik-Stroms und die zusätzliche Stromnach-

frage der Wärmepumpen zeitlich auseinander, sodass sich die Spitzennachfrage

des Netzstroms im Winter verdoppelt.
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Chapter 1

Introduction

1.1 Motivation and objective

In 2015, the residential building sector was directly emitting 10 % of the Green-

house Gases (GHG) in Germany by the combustion of fossil fuels. Further, it was

responsible for 12 % of the emissions due to the GHG footprint of its energy imports

[AGEB, 2017; rwi, 2017; BMWi, 2016]. Those emissions need to be cut in order to

reach the overall goal of net zero GHG emissions in the second half of this century

[UN, 2015] and to minimize the impact of anthropogenic climate change [Solomon

et al., 2009]. Therefore, the German federal government defined a target for a near

GHG neutral building stock: The primary energy consumption of the heat demand

in buildings shall be reduced 80 % from 2008 to 2050 [BRD, 2010]. The European

Union introduced the concept of ”Zero Energy Buildings” (ZEB) in the context of

its energy performance of buildings directive [EU, 2010, 2012] with the goal to de-

ploy GHG neutral buildings that compensate for their emissions by exporting on-site

generated renewable energy [REHVA, 2011; Marszal et al., 2011].

While the objectives are clear, the optimal pathway to a GHG neutral building stock

is uncertain: Every year new materials, methods and processes are invented which

allow for future technological solutions that are from today’s perspective not imag-

inable. Nevertheless, the majority of the technologies are not mature and it is un-

certain how they will be integrated in a future energy system. This uncertainty

unsettles utility providers [OCallaghan et al., 2014; Agnew and Dargusch, 2015]

as well as governments [Rickerson et al., 2014]. Therefore, analyses are needed

that are able to extrapolate from today’s reality into the future, to predict technology

development, their system integration and their cost distribution. They can lay the

basis for decision makers to design incentives and markets to achieve a robust and
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predictable transformation to a GHG neutral building stock.

Today’s predictions for the building sector [McKenna et al., 2013; BMWi, 2015;

Diefenbach et al., 2016; Beuth, 2017; BMWi, 2018] mainly focus on GHG reduc-

tion strategies for the heat demand. They conclude that significant energy saving

potentials shall be accessed by increased refurbishment rates and the residual heat

shall be supplied with renewable energy.

Nevertheless, in the realm of sector coupling [Robinius et al., 2017], the heat de-

mand of the building sector cannot be regarded as any more isolated from the other

energy system: Heat pumps are seen as a key option to efficiently provide space

heat [IWES, 2015; UBA, 2017a]; and Combined Heat and Power (CHP) generation

allows an efficient usage of the chemical energy carriers while providing flexibility

to the grid [Lund et al., 2012]. Further, a trend towards an increased self-supply of

residential buildings is recognizable: The rapidly falling prices of photovoltaics [ISE,

2015] and batteries [Nykvist and Nilsson, 2015] constitute the grid parity [Breyer

and Gerlach, 2013], meaning that the levelized cost of self-generated electricity is

below the retail electricity grid price.

Both trends, the changing heat supply and the increasing self-sufficiency of the

buildings, will significantly change the future electricity grid load of the buildings

and question the feasibility of the current grid infrastructure.

Therefore, new analysis are required that consider the adoption and operation of

new supply technologies and efficiency measures spatially and temporally differ-

entiated with the objective to locally evaluate the impact of the energy supply to

the grid infrastructure. Thereby, they need to account for cost optimality, since

the main motivations of building owners to adopt different supply technologies are

savings or earnings from their installation [Balcombe et al., 2014]. This counts as

well for efficiency measures or energy retrofits where the necessity of replacement

or the financial profitability are the main activators for the adoption [Achtnicht and

Madlener, 2014]. Although the assumption of sole financially optimal decision mak-

ers, referred to as homo economicus, underestimates social and attitudinal compo-

nents influencing the technology adoption, it predicts well the rate of adoption and

cumulative adoption [Robinson and Rai, 2015].

1.2 Structure

Consequently, the following questions shall be answered in this thesis:
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1. What is the cost optimal combination of refurbishment and adoption of sup-

ply technologies for different residential buildings to achieve a carbon neutral

building stock?

2. How can self-consumption contribute to this?

3. How does the changing supply structure temporally impact the electricity

load?

4. What are regional differences in the technology adoption and the grid load?

Therefore, this work introduces a new model that predicts the cost optimal deploy-

ment and operation of energy assets for residential buildings in a high temporal and

spatial resolution. Figure 1.1 embodies the basic idea and structure of this work.

Figure 1.1: Overall workflow of the approach in the thesis and the different Chap-

ters describing it.

Other analyses and models related to this work are discussed in Chapter 2. The

discussion is separated into three categories: GHG reduction strategies for the

residential building stock, potential assessment of self-sufficient residential energy

supply, and cost optimal design of energy supply systems.

Based on this, a new optimization model for the residential energy supply is de-

veloped in Chapter 3. It accounts, e.g., for the temporal occupant behavior, their

related device usage, tolerated room temperature levels, limited roof capacities or

varying insulation materials. New times series aggregation methods are developed
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and introduced to reduce the complexity of the model, since the variety of invest-

ment and operation options make it computationally challenging.

Chapter 4 introduces a novel aggregation algorithm to create a spatially resolved

representative archetype building stock based on Census data. The relevant build-

ing parameters are introduced for Germany on the municipality level. The resulting

stock is then extended with the construction and demolition of buildings to predict

its development into the future.

In Chapter 5, first the model chain is validated, by optimizing the aggregated

archetype buildings for the years 2010 until 2015 and comparing the resulting en-

ergy consumption with public available values. Afterwards, it is optimized for a

scenario in 2050. Thereby, the cost optimal supply systems for the diversity of res-

idential buildings are determined. Those are then adapted in different pathways

to reach a GHG neutral building stock. The resulting change of the grid load is

derived, discussed and compared to other literature.

Chapter 6 summarizes the results and draws the main conclusion.
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Chapter 2

Related work

This chapter discusses existing research related to the environmental, technical

and economical evaluation of residential buildings. It is structured as follows: Sec-

tion 2.1 discusses the models and results of existing strategies for carbon dioxide

reduction of the German residential building stock. Afterwards, research related to

the trend towards self-sufficient energy supply of residential buildings are analyzed

in Section 2.1. Section 2.3 examines existing models to determine cost optimal

energy supply systems with the focus on buildings. The chapter closes with a dis-

cussion and summary of the related works in Section 2.4 and Section 2.5.

2.1 Strategies for greenhouse gas emission reduction

The residential sector was responsible for 26 % of the overall final energy consump-

tion in Germany in 2015 with around 639 TWh/a (631 TWh/a [DESTATIS, 2017];

636 TWh/a [rwi, 2017]; 639 TWh/a [AGEB, 2017]]. The majority of the energy was

used for space heating with 483 TWh/a and hot water with 93 TWh/a. Other relevant

demands are process heat, e.g., for cooking or washing with 38 TWh/a, refrigera-

tion with 29 TWh/a and information and communication technology with 22 TWh/a.

The demand for lighting and mechanical energy plays a tangential role with 10.75

and 4.6 TWh/a [rwi, 2017].

This demand structure also constitutes the GHG emissions caused by the residen-

tial building stock, as seen in Figure 2.1. The direct GHG emissions are generated

by the burning of fossil gas or oil to meet the demand for space heating and hot

water. The direct emissions due to process heating, e.g. by gas stoves, are negli-
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gible. The majority of the residential GHG emissions are indirect emissions due to

the district heating supply or imported electricity.

Figure 2.1: Share of the direct and indirect residential GHG emissions in 2015

of the total emissions in Germany. It includes the GHG footprint of the electricity

imported from the grid, as well as the GHG emissions in the supply chains of gas

or oil. The calculations are based on the data of [AGEB, 2017; rwi, 2017; BMWi,

2016].

In order to reduce these GHG emissions, different models have been proposed to

develop strategies for the emission reduction or focusing on efficiency measures to

reduce the final energy consumption. A general overview of such models can be

found in Martinez Soto and Jentsch [2016], wherefore this section only presents

the models and results relevant for Germany. The works are categorized to mod-

els considering only the building stock, and models that optimize all sectors and

consider the building stock as part of it.

Sole building stock models

McKenna et al. [2013] proposed a framework to predict the development of the

building stock and its related energy demand to 2050. The stock modeling dynam-

ically considers demolition, construction, renovation rates and renovation depth as

reduction indicators. A spatial separation of the stock development between old

and new federal states is considered. The change of the energy demand of the

buildings is statistically extrapolated from the historical development of the specific
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residential final energy demand per living area. The results reveal that the historic

refurbishment rate of 1 % has to be increased to 2 % to meet the primary energy

demand reduction targets of 80 % from 2008 to 2050 by the German federal gov-

ernment.

In 2015, the Federal Ministry for Economic Affairs and Energy (BMWi) published an

efficiency strategy for the whole German building stock, including buildings of the

service and industry sectors [BMWi, 2015], developed by Prognos and ifeu - Institut

für Energie- und Umweltforschung Heidelberg. The strategy mainly focuses on the

heat supply of the buildings and defines a corridor between efficiency measures

and the renewable share of the remaining energy supply to achieve an 80 % reduc-

tion target of the primary energy consumption from 2008 to 2050. The reduction of

the final energy consumption is thereby in a range of 36 % to 54 % and the share of

renewable energy supply between 57 % and 69 %. Heat pumps play a secondary

role in both scenarios. Instead, biomass is considered as the main resource to

provide renewable energy. The energy provided by district heating is decreasing in

both scenarios. A cost analysis shows that the efficiency scenario results in higher

costs for living and energy, although a higher biomass price is considered in the re-

newable scenario, caused by a higher demand. The interaction with the remaining

energy system by sector coupling is only qualitatively discussed.

Diefenbach et al. [2016] introduced an analytical approach to determine strategies

for reaching GHG emission targets in Germany for 2050, depending on the replace-

ment rates of supply technologies and renovation rates of residential buildings. The

building database behind this is from the Institut für Wohnen und Umwelt (IWU)

[IWU, 2010]. Similar to McKenna et al. [2013], they find that an increase of the

building renovation rate to at least 2 % is required to reach the GHG emission sav-

ing targets of 80 % to 95 % for 2050. The final energy demand for space heating

will decrease from 567 TWh/a in 2009 to a value between 338 TWh/a to 363 TWh/a

in 2050, depending on the time needed for increasing the renovation rate from 1 %

to 2 %. Additionally, all newly installed heat supply systems need to be heat pumps,

CHP units, biomass and solar systems after 2025, and no gas and oil boilers are

allowed anymore. The basic scenario predicts a share of heat pumps of 59 % at

the final heat supply in 2050. Natural gas boilers contribute only to 13 % of the heat

supply and the remaining heat is provided by CHP units and district heating.

A techno-economic analysis of the future residential building stock is also per-

formed by Sterchele et al. [2016]. They divide the residential building stock into nine

archetype buildings derived from the IWU building database [IWU, 2010]. Those

buildings are categorized by the age and the type of the buildings, e.g. single-family

houses and multi-family houses. Further, Sterchele et al. [2016] consider four dif-

ferent renovation depths of such and rely on the different heat transfer coefficients,

insulation thickness and building components. Stationary calculations are used to
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evaluate building performance based on the DIN V 18599 DIN [2016], which in-

cludes efficiency measures as well as the environmental evaluation of supply tech-

nologies. Although they consider historical refurbishment measures, the validation

of the model with the final energy consumption for 2011 shows an overestimation

of around 30 %. They conclude that this is constituted by the gap between the cal-

culated demand of the standard and the real consumption behavior, which cannot

be properly considered in a stationary calculation. Different future scenarios are

defined for the building stock resulting in reductions of the final energy demand be-

tween 42 % and 73 % and reductions of the GHG emissions of 62 % to 82 %. No

economic evaluation is performed for the aggregated building stock, which makes

the numerous scenarios difficult to compare.

LOGIT MODEL:

A logit model is used to estimate the probability of a discrete or categorical out-

put, e.g. buying a heat pump or a gas boiler, by a set of predictor variables, e.g.

heat demand and supply temperature.

In 2018, the BMWi presented a set of scenarios for all sectors developed by the

Frauenhofer ISI, Consentenc GmbH and the ifeu [BMWi, 2018]. While many dif-

ferent scenarios were developed, the review here focuses on the residential sector

in the Base scenario. The technology adoption is modeled with the Invert tool de-

veloped at the Energy Economics Group in Vienna [Stadler et al., 2007; Kranzl

et al., 2013; Müller, 2015]. It is a bottom-up model considering the evolution of a

building stock and a technology adoption according to a nested logit model and

the lifetime of the technologies. The model has a high degree of detail for the

building technology adoption, but it is decoupled from the optimization of the over-

all energy system. Therefore, renovation rates are, e.g., extrinsically determined

and steadily increase up to 3 % in 2050 for the Base scenario and result in a re-

duction of the final energy consumption of 58 % for space heating and hot water

over all sectors. The largest share of heat still gets provided by natural gas. The

demand for household appliances, lighting and refrigeration is separately modeled

with the FORECAST-residential model from the Frauenhofer ISI [ISI, 2018] and is

also based on a technology adoption considered with a logit model and probabilistic

technology lifetimes. The base scenario predicts here a reduction of the residential

electricity demand of 27 % from 2010 until 2050, mainly caused by the replacement

with more efficient appliances.

Cross-sectoral optimization models

A collaboration between the Fraunhofer IWES, Frauenhofer IBP and the ifeu ana-

lyzed the future interaction between the renewable energies and the heat and trans-



2.1 Strategies for greenhouse gas emission reduction 9

port sector [IWES, 2015]. Therefore, they use a temporally resolved single node

model for Germany, optimizing the energy supply for electricity, heat and transport.

Although a building stock model is included, the reduction of the final energy de-

mand for residential space heating is extrinsically reduced from 509 TWh/a in 2008

to 245.5 TWh/a in 2050. The results show that the remaining heat gets mainly sup-

plied by heat pumps with 53 %, a large share by district heating with 24 % based

on large-scale CHP and heat pumps, and 22 % by biomass. No fossil energy car-

rier is used anymore for residential heating since their usage is more cost efficient

in the industry and mobility sectors. The study emphasizes the necessity for the

reduction of the supply temperatures of the heating sector in order to improve the

related heat pump performance.

A collaboration of the Umweltbundesamt UBA and the Frauenhofer ISE [UBA,

2017a] regularly publishes a strategy for a carbon neutral German building stock, in-

cluding buildings of the residential and the service sectors. The building archetypes

are also defined according to IWU [2010] and adapted with regional Census data

[Bundesamt, 2011]. The stock model is integrated into the temporally resolved en-

ergy system optimization model REMod-D [Henning and Palzer, 2014; Palzer and

Henning, 2014]. The reference scenarios define three different measure levels for

the heating supply with a reduction of the final energy demand of 35 % to 60%

resulting in GHG emission reductions of 82-84%. The remaining heat is supplied

by a high share of heat pumps since chemical energy carriers, such as natural gas

or biomass, are used more cost efficiently in the other energy sectors. An optimiza-

tion of the whole model with renovation measures as unconstrained optimization

variables leads to a sole reduction of final energy consumption for heating of the

building stock by 24 % from 2008 to 2050. Instead, higher capacities of renewable

energy are installed and lead to a cheaper overall energy system for the 80 % GHG

reduction target. Still, an open question is how to reach 95 % GHG reduction or

even a fully carbon neutral building sector, as the title of the report indicates.

While this is only an extraction of studies considering GHG reduction strategies of

the building stock, it gives an overview of the considered solution space between

energy savings and the change of the heat supply structure. The latter is dominated

by a switch to heat pumps that can significantly impact the electricity grid load.

Further, the sole building stock models mainly focus on demand reduction and al-

ternative energy supply carriers, but reduction targets can also be achieved by an

energy export of the buildings according to the definition of nZEB [EU, 2009; RE-

HVA, 2011] that compensates for their energy demand. Nevertheless, this is mainly

possible by an electrical grid feed-in.
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2.2 Grid impact of residential buildings and self-

consumption

Besides the electrification of the heat supply, the electrical supply of residential

buildings is dominated by a trend towards self-sufficient energy supply systems.

In general it means the generation of electricity inside the building and the lo-

cal consumption while only excess energy is exported to the grid. The desire of

building owners to increase self-consumption is only minorly influenced by envi-

ronmental goals. Instead, cost minimization is the main motivation to increase

self-consumption [Balcombe et al., 2014]. The steady price drop of photovoltaic

panels [ISE, 2015; IRENA, 2016] has the consequence that the levelized cost for

electricity of on-roof photovoltaics (e.g., 23.9 ct/kWh in Germany 2016 [Lahnaoui

et al., 2017]) are nowadays lower than the retail electricity prices for households

in many countries (28.7 ct/kWh in Germany 2016 [Lahnaoui et al., 2017]), con-

stituting the so-called grid parity [Breyer and Gerlach, 2013], which benefits the

self-consumption of the produced electricity [Luthander et al., 2015; IEA, 2015].

This self-consumption can even be increased by the installation of batteries [Rat-

nam et al., 2015], which also had a significant price drop in recent years with learn-

ing rates between 12 to 16 % [Nykvist and Nilsson, 2015; Schmidt et al., 2017]. This

results in a highly volatile market that ranges from prices above 2000 Euro/kWh

to 530 Euro/kWh for residential battery systems, as seen in the Appendix A.3.2.

Nevertheless, different studies [Khalilpour and Vassallo, 2015; Bracke et al., 2016;

Vieira et al., 2017] show that sole photovoltaic battery systems are not econom-

ically feasible to reach an uninterrupted self-sufficient residential building supply.

Therefore, a demand gap will remain that has to be supplied by the central energy

systems. This gap is difficult to predict on an aggregated level since the uptake

of the photovoltaic battery systems is expected to depend on the design of the

electricity prices for residential buildings [Deutsch and Graichen, 2015; May and

Neuhoff, 2016; Parag and Sovacool, 2016; Rickerson et al., 2014].

Therefore, different approaches exist for the model-based prediction of the uptake

and impact of photovoltaic battery systems.

In 2014, the Institut der deutschen Wirtschaft Köln (IW) published together with

the Energiewirtschaftliches Institut an der Universität zu Köln (EWI) a report [IW,

2014] about self-consumption of the residential sector, the industry sector, the ser-

vice sector and the mobility sector. Besides photovoltaic battery systems, they

also consider CHP systems together with heat storage systems. An assessment

of the historic self-consumption rates indicates that it mainly existed in industry in

the past and was negligible for the residential sector. They introduce a cost opti-

mization model for the defined technologies and different actor types to predict the
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potential for self-consumption under different market conditions in the future. The

results show that the economic potential for residential self-consumption is around

115.6 TWh/a, if no levies or taxes are considered for self-consumption. The ma-

jor part of the self-generated electricity gets provided by CHP units. This potential

gets reduced to 0 TWh/a if all existing levies in Germany are considered for the

self-consumed electricity.

Agora published in 2016 an article that derives the potential for photovoltaic storage

systems in Germany [Prognos, 2016]. They define different archetypes for single

and two family buildings, agriculture and food trade buildings. Based on those,

they define different potential installation cases of photovoltaic and battery capaci-

ties. Self-consumption for heating appliances such as heat pumps is considered as

well. Almost all considered cases are predicted to become economically feasible

in the coming years due to the fast price reductions of photovoltaics and batter-

ies. The analysis concludes that the economic potential for self-consumption is

at 38.7 TWh/a in the considered residential buildings in 2035. 18.3 TWh/a of the

energy is used for new heat applications such as heat pumps or warm water, in-

dicating that self-generation can probably compensate for the increasing electricity

demand for heating applications.

Schill et al. [2017] analyzed the macroeconomic effects of self-consumption by cou-

pling different operation strategies of residential photovoltaic battery systems with

the central electricity market model DIETER for the year 2035. 15 GWs of photo-

voltaic were assumed to be operated together with battery storage systems to reach

self-sufficiency rates for single households between 40 % and 70 %. The total na-

tional energy systems cost increased for high self-sufficiency rates since redundant

storage capacities are installed that are not necessarily required. A market-oriented

operation of the batteries can reduce this, but is not able to fully compensate for the

additional investment cost in the considered scenario.

Klingler [2017] developed a market diffusion model for photovoltaic battery systems

respecting different consumer preferences and individual electricity consumption.

The model is based on a techno-economic evaluation of the photovoltaic battery

system and individual utility functions for their adoption. As such, an accumulated

adoption of 760 thousand small scale photovoltaic battery systems is predicted until

2030 with a moderate battery capacity of 2 GWh. Nevertheless, the results indicate

that at this time only the innovators and early adopters have installed photovoltaic

battery systems while the majority and laggards would adopt the systems in the late

2030s and 2040s, which would substantially expand the overall potential until 2050.

Klingler [2017] also points out that the model is highly sensitive to the assumed

electricity and technology prices.
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NUTS:

The abbreviation stands for the French Nomenclature des Unités Territoriales

Statistiques and describes a geocode for subdivision of countries. While NUTS-

0 starts with national states, higher levels disaggregate into subregions. For the

case of Germany, NUTS-1 describes the 16 federal states, NUTS-2 a division into

39 Regions, and NUTS-3 the administrative boundaries of the 401 Landkreise.

Higher levels of disaggregation are described by the Local Administrative Unit

(LAU), while LAU-2 represents the municipalities in Germany.

At the end of 2016, the Frauenhofer ISI published a report for the network devel-

opment plan that predicts the spatial and temporal change of the electricity load in

Germany until 2035 [ISI, 2016]. The FORECAST -model was used, which predicts

the national energy demand for the residential, the service, the industry and the

transport sectors. Based on those, the load is top-down distributed to NUTS-3 level

based on, e.g., number of households or available income. The spatially resolved

annual energy demand is validated with data from the transmission grid operators

and is able to show a numerical fit of 90 %. Different scenarios for the penetration

rate of heat pumps, electric vehicles and battery storage systems are defined until

2030. The scenarios show a small load reduction in a range of -6.7 % to 0 % from

2013 until 2030 since efficiency measures overcompensate for the additional elec-

tricity consumers. Still, the peak load is increasing in the winter evening hours, al-

though system oriented load management is considered but not able to completely

compensate for the additional demands. The outlook of the report concludes that

a further load reduction would be expected until 2050 due to socio-structural devel-

opment but the increasing demand of heat pumps and electric mobility dominates,

wherefore an increase of the total electricity demand from 523 TWh/a in 2013 to

570 TWh/a in 2050 is expected. The results of the report are difficult to retrace,

since no documentation of the data, e.g. behind the 2050 case, exists.

2.3 Optimal design of energy supply systems

Energy retrofits and self-consumption are mainly motivated by financial profitability

[Balcombe et al., 2014; Achtnicht and Madlener, 2014]. Therefore, the following

section analyzes models to determine cost optimal energy supply systems. Al-

though this work focuses on residential building systems, the literature review here

targets spatially and temporally resolved energy system design models in general,

since related methods or approaches can be transferred. Passages of this section

are based on two articles [Kotzur et al., 2018a,b] that were published in conjunction

with this thesis.
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In general, the determination of residential energy systems with minimal environ-

mental and economical impact is a highly complex task: Energy supply and de-

mand must be balanced in time, in space, and in energy form, and the increasing

number of generation, storage, and load management and reduction options leads

to extremely large solution spaces where identifying optimality in technology op-

tions, placement, sizing and operation can be daunting. The analytical solving of

those optimization problems may not be feasible and requires instead the use of

mathematical programs to identify the optimal solution [Baños et al., 2011].

Although Moore’s Law held for most of the last few decades [Schaller, 1997], the

computational tractability of these mathematical programs remains substantially

limited [Leyffer et al., 2016]. The size of the input data directly influences the size

of the related optimization problem, and with it the requirement for processing re-

sources. The integration of renewable energy expands this challenge because the

proper modeling of these technologies is only possible with increased resolution

of the temporal framework [Poncelet et al., 2014; Stenzel et al., 2016; Pfenninger,

2017].

Therefore, a trade-off between the different complexities has to be made, as illus-

trated in Figure 2.2.

The scope and spatial resolution determines the System Size, which can be de-

scribed by the scale of the overall technology network. It can either be influenced by

the spatial resolution resulting in a high number of nodes [Samsatli and Samsatli,

2015; Samsatli et al., 2016; Pfenninger, 2017; Welder et al., 2017], or the dimen-

sions of a single node regarding the different technology types and sectors [Palzer

and Henning, 2014; Henning and Palzer, 2014], e.g. technical solutions for heat-

ing, cooling, electricity and chemical processes in a single node. To achieve these

large-scale systems designs, primarily Linear Programs (LP) are used [Pfenninger,

2017; Schlachtberger et al., 2018], or Mixed-Integer Linear Programs (MILP) with a

small amount of binary or integer variables [Mehleri et al., 2013; Harb et al., 2015;

Samsatli and Samsatli, 2015; Samsatli et al., 2016; Kwon et al., 2016; Mashayekh

et al., 2017; Welder et al., 2017].

The other factor directly affecting the scale and computational load of an optimiza-

tion problem is the number of Time Steps, also sometimes referred to as time

slices or snapshots. First, its cardinality is determined by the temporal resolution,

e.g. if sub-minutely [Beck et al., 2016], sub-hourly [Appen et al., 2015; Lauinger

et al., 2016], or hourly intervals are considered. Second, the observation periods

can range from a number of typical days to time series over whole decades [Pfen-

ninger, 2017]. The modeling of a hierarchical order of time grids [Yoza et al., 2014;

Samsatli and Samsatli, 2015; Renaldi and Friedrich, 2017; Kotzur et al., 2018b]

gains popularity since it allows the modeling of long observation periods without
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Figure 2.2: Illustration of the complexity dimensions, problem classes, and solving

approaches in energy system design models and a qualitative classification of the

selected models in the reviewed literature.

losing the information of short term time series fluctuations. The usage of time se-

ries aggregation can systematically reduce the temporal scale in advance and is

analyzed in more detail in Kotzur et al. [2018a].

The overall allowable system scale is lately limited by the Level of Detail of the

techno-economic models. Nonlinear performance functions, e.g. the part load effi-

ciency of a fuel cell, determine a non-convex set of operation states, and with it a

non-convex optimization problem, most often resulting in Mixed-Integer Nonlinear

Programs (MINLP). Although different approaches try to simplify them with piece-

wise linear operation states or iterative procedures incorporating discrete states

[Goderbauer et al., 2016; Milan et al., 2015; Schütz et al., 2017b], this problem

class is still computationally heavy, wherefore it can only be analyzed for small

scale systems or small temporal observation periods. Minimal part load constraints

can be defined with binary variables [Merkel et al., 2015], which is computation-

ally tractable for hourly time series in a year, but also defines an additional binary

variable for every technology and time step. Nevertheless, e.g., simple ramping

constraints can be implemented continuously and linearly and do not significantly

affect the computational load.
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Figure 2.3: Comparison of different approaches to model the cost of certain tech-

nologies for the example of a residential battery.

Additional to the operational constraints of the systems, the choice and scaling of

the technologies are challenging, as illustrated in Figure 2.3. The exact choice

of technology units that are available on the market, including their related prices,

would introduce many single binary or integer variables [Voll et al., 2013; Petr-

uschke et al., 2014; Goderbauer et al., 2016; Bahl et al., 2017]. This is computa-

tionally challenging but closest to reality. National or global energy systems mod-

els do not require this degree of detail since they rely analytically on an abstract

perspective of the system and model often the technology scaling with a continu-

ous linear cost function [Henning and Palzer, 2014; Zerrahn and Schill, 2015; Ram

et al., 2017; Schlachtberger et al., 2018]. Nevertheless, the consideration of, e.g.,

learning effects in macroeconomic models determines nonlinear cost curves, which

have to be approximated with other approaches [Heuberger et al., 2017]. For the

design of microgrids or building supply systems, it is common to approximate the

technology cost with a cost share related to their existence (Intercept) and con-

stant cost share related to their scale (Slope) [Stadler et al., 2014; Evins, 2015;

Lindberg et al., 2016a; Stadler et al., 2016; Streblow and Ansorge, 2017] result-

ing in a MILP. The choice of efficiency measures, e.g. in the building envelope,

are most often single binary variables [Stadler et al., 2014; Streblow and Ansorge,

2017; Schütz et al., 2017a; Wu et al., 2017]. While the Intercept-Slope approach is

a good trade-off between complexity and accuracy, it still has high estimation errors

for larger ranges of the technology scale. E.g., CHP units have a strong economy of
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scale that state nonlinear cost functions. The exact modeling of such concave cost

function would result for the case of cost minimization in a non-convex optimiza-

tion problem. Therefore, global optimizer or non-exact metaheuristic approaches

are required [Fabrizio et al., 2009]. Alternatively, piecewise linear approximations

are popular [Milan et al., 2015; Merkel et al., 2015; Gabrielli et al., 2017; Elsido

et al., 2017], which generate more binary variables but provide a sufficient degree

of accuracy.

EXACT AND METAHEURISTIC SOLVER:

Exact solvers are an algorithm class that is able to exactly determine the global

optimum for a given mathematical problem, or at least provide a solution with

a measure indicating the theoretically maximal distance of it to the global op-

timum. Metaheuristic solvers are algorithms that search the solution space by

a defined procedure to find sufficiently good solutions, often including stochas-

tic sub-processes. They do not need as holistic information about the solutions

space as exact solvers, but they cannot provide a measure of the global qual-

ity of the solution. Still, for combinatorial mathematical problems they can often

provide good solutions with small computational effort.

While all these complexities limit the energy system models, different options for

complexity reduction exist and gain popularity: Spatial aggregation can reduce the

number of nodes in an energy system network [Mancarella, 2014], systematically

simplifying the technology models by avoiding nonlinearities or discontinuities and

the related non-convexity of the program Geidl and Andersson [2007]; Milan et al.

[2015]. Temporal aggregation can reduce the cardinality of the input time steps

and create typical periods representing the original input time series [Kotzur et al.,

2018a,b].

The review of the models shows further that optimization problems solved with

metaheuristics often rely on an operation simulation [Henning and Palzer, 2014;

Ahmadi and Abdi, 2016; Hosseinalizadeh et al., 2016; Streblow and Ansorge, 2017]

or an operation optimization [Stadler et al., 2016; Evins, 2015; Teichgräber et al.,

2017] underneath, as illustrated in Figure 2.4. A reason is that heuristic solvers

perform poorly with the scale of the overall problem size, wherefore it is preferred

that only the technology structure and scale are chosen by the solver. The second

reason is that simulation models are often developed first and it is decided as a

second step to use the models for the purpose of a system design. For this pur-

pose, heuristic solvers are advantageous since they can rely on a black-box system

model.
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Figure 2.4: Comparison of optmization approaches for the design of energy sys-

tems.

2.4 Discussion

Different research areas related to this work were reviewed, ranging from GHG re-

duction strategies to the cost optimal energy system design. This section compares

them and derives the open research gaps.

High renovation rate vs. cost optimality: The modeling of GHG reduction strate-

gies for buildings is most often done with top-down models focusing on the energy

demand for heating. Although a certain building stock is considered, it is extrinsi-

cally defined what measures are required to reach the reduction targets. Therefore,

the majority of the studies concludes that an increase of the renovation rate from

1 % to at least 2 %, or even up to 3 %, is required to reach the GHG reduction tar-

gets in 2050, while reducing the final energy demand for heating in a broad range

of 35 % to 73 %. Nevertheless, an unconstrained cross-sectoral optimization [UBA,

2017a] showed that smaller renovation rates are more cost efficient, resulting in

an optimal final energy demand reduction for heating of 24 %. A similar tendency

can be derived by the comparison of the two scenarios by BMWi [2015], where

the costs of the renewable energy scenario were below the costs of the efficiency

scenario.

Heat pumps or chemical energy carriers: The majority of the studies and scenar-

ios expects that heat pumps will have the biggest share in the heat supply. Espe-

cially, the cross-sectoral optimization studies [IWES, 2015; UBA, 2017a] highlight

that remaining chemical energy carriers, either fossil or synthetically produced, are

more efficiently used in the industry and mobility sectors. Only the two studies

commissioned by the BMWi consider that either biomass [BMWi, 2015] or natu-

ral gas [BMWi, 2018] has the biggest share. These contradictory predictions are

partly determined by the different modeling approaches: Due to levies, electricity

prices for end consumers are magnitudes higher than renewable generation costs,

wherefore a bottom-up technology adoption model [Müller, 2015] avoids the instal-
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lation of heat pumps and remains with gas boilers, although it is not optimal from a

macroeconomic perspective [IWES, 2015; UBA, 2017a].

Self-consumption is sensitive to market design: Different studies try to predict

the potential for self-consumption especially for photovoltaic battery systems. Nev-

ertheless, the bottom-up models [IW, 2014; Prognos, 2016; Klingler, 2017] showed

that it is highly dependent on the market design, e.g. if levies and taxes are con-

sidered for self-consumption or not. Depending on such, the potential for electric

self-consumption in the residential sector ranges from 0 TWh/a to 115.6 TWh/a, in-

cluding self-generation with CHP units [IW, 2014]. The upper bound would almost

cover the whole residential electricity demand of 128 TWh/a in 2015. All in all, this

makes the roll-out of highly self-sufficient supply systems a political decision.

Macroeconomic effects of self-consumption are diverse: Although self-

consumption might be profitable from a building owner’s perspective, it is open what

type of self-consumption is cost optimal from a macro perspective. E.g., Schill et al.

[2017] showed that redundant storage technologies increase the total system cost.

Nevertheless, studies such as The cellular Approach [VDE, 2015] point out that

decentralized produced electricity should also be decentrally consumed in order to

achieve a robust system design. All in all, a compromise has to be determined

regarding additional cost, robustness and acceptance of the resulting system.

Potential of Power-to-Heat for self-consumption: Only one study showed that

a high potential for self-consumption especially exists for space and water heat-

ing [Prognos, 2016]. It covered almost 50 % of the overall potential for self-

consumption. Nevertheless, the heat model was coarse and the whole of the resi-

dential building stock was not considered. It raises the question, how big the overall

potential of self-consumption for heat pumps and electric heaters is; and if it will re-

place the demand for solar thermal. E.g., only the passive storage capacities of

the German building stock are expected to have a storage capacity of 200 GWh

[Kohlhepp and Hagenmeyer, 2017].

Bottom-up modeling more accurate than top-down: Bottom-up models are

more popular for the self-consumption rate than top-down models, since it is mainly

economically driven and can only be sufficiently evaluated with a temporally re-

solved model for single buildings. A comparison of models for GHG reduction

strategies for heating in residential buildings showed additionally that bottom-up

models are more accurate and less sensitive to the input variables [Martinez Soto

and Jentsch, 2016]. Nevertheless, they are also more challenging in terms of

parametrization. No bottom-up model was found that holistically considers cost

optimal investment decisions into renovation measures together with an update

of heat supply and decentral generation technologies for self-consumption from a

building owner’s perspective, although reinforcing effects of the different measures
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are expected.

Variety of cost optimality models: In order to find good models for the cost op-

timal investment behavior into building energy supply systems and refurbishment

measures, an analysis of existing decision models related to this topic was con-

ducted. A variety of models exists already, a limited set of models includes reno-

vation measures together with the supply system optimization [Stadler et al., 2014;

Evins, 2015; Wu et al., 2017; Schütz et al., 2017a]. Further, a model that addi-

tionally incorporates the passive storage capacity of the buildings together with the

constraining behavior of the occupants was not found. The identification of this gap

is supported by the literature review of Bloess et al. [2018].

Cost optimal design is computationally challenging: The analysis of existing

models revealed the computational limitations of mathematical programs for op-

timal energy system design. Since the majority of the reviewed models are just

applied for a limited set of example buildings or application cases, computational

inefficiencies are secondary. Nevertheless, for the purpose of a bottom-up model,

computationally efficient programs are required because they need to be applied to

many different building types in different locations. Therefore, a building optimiza-

tion model would be needed that has a good compromise between computational

load and accuracy.

Spatial resolution only rarely considered: The minority of the reviewed studies

considered a spatial distribution of the building stock, although this would help to

evaluate the future grid impact of self-consumption and the electrification of the heat

demand. Only the study by ISI [2016] considers spatial effects in the uptake of heat

pumps and battery technologies. Nevertheless, it is extrinsically prescribed and

the technology operation centrally managed. This refers to a top-down model and

constitutes high uncertainties in the input parameters, such as the heat demand

[Martinez Soto and Jentsch, 2016].

In summary, it can be stated that a lack of bottom-up analyses exists that consider

the cost optimal technology adoption of single building owners holistically, including

supply and demand of heat and electricity together. Many models exist already

for the cost optimal design and operation of such systems for single buildings, but

do not allow the evaluation for a whole building stock. Nevertheless, this type of

bottom-up approach is required to evaluate sufficiently the cross-sectoral effects of

self-consumption together with the future residential heat demand and heat supply

structure, since their combination and enforcing effects will determine together the

final shape of the residential electricity demand. Therefore, this work aims at closing

this gap.
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2.5 Summary

This chapter introduced and discussed related works and studies to the energy

demand and technology adoption of the residential building stock.

Section 2.1 discussed the models and results of existing strategies for carbon diox-

ide reduction of residential buildings in Germany. Mainly two options span a corridor

of reduction strategies: Either the share of renewable energy in the residential en-

ergy supply has to be substantially raised or the renovation rate of the buildings

has to increase from today’s 1 % per year to a value between 2 % to 3 % to meet

the German primary energy reduction target of 80 % from 2008 to 2050. Some

studies indicated that the first strategy is more cost efficient, but the reference sce-

narios of the federal government consider the second strategy. Further, the review

of cross-sectoral models revealed that the building stock should even reach higher

goals since the remaining chemical energy carriers in the year 2050 are more cost

efficiently used in the industry and mobility sectors.

Further, studies analyzing the trend towards self-sufficiency of residential build-

ings were reviewed in Section 2.2. It was revealed that the economic potential of

self-sufficiency is mainly determined by the market design around the residential

consumer. Hence, it is a political decision if a high share of self-sufficiency will

arise. A big potential for self-consumption is expected for Power-to-Heat, but no

study holistically evaluated its potential for the residential building stock.

In Section 2.3, existing models to determine cost optimal energy supply systems

were compared. The conclusion could be drawn that already many models for the

optimal design of single buildings exist. Nevertheless, their high computational load

makes them not applicable to a whole building stock.

An integrated discussion of the reviewed literature was done in Section 2.4. Only

one model was found that analyzes spatially and temporally resolved the load

change due to a future technology adoption, but the adoption rates are extrinsi-

cally set and a centralized technology operation was considered. It was affirmed

that no work exists that considers the cost optimal technology adoption and oper-

ation of single residential building owners bottom-up, simultaneously regarding the

supply and demand for heat and electricity. Nevertheless, this is required in order

to holistically evaluate the most cost efficient pathways to a GHG neutral building

stock.
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Chapter 3

Optimal residential energy supply

The following chapter introduces an optimization model that generically determines

the cost optimal design and operation of energy supply and refurbishment mea-

sures in residential buildings. A flowchart of the whole model is illustrated in Fig-

ure 3.1. The shown numbers refer to the sections explaining the sub-models.

Section 3.1 introduces a profile generator that predicts the behavior of occupants in

the building and derives the electricity load from appliances in the households, e.g.

lights or stoves. The resulting profiles set the boundary conditions for the thermal

comfort and electricity demand that has to be provided in a temporal resolution.

Section 3.2 describes the thermal building model, which respects the optional re-

furbishment measures as well as the internal storage capacity of the building. The

optimization framework is introduced in Section 3.3. It creates the superstructure of

supply technology options for the building, while its generic formulation is adapted

such that different supply temperatures of the heating system can be considered.

Section 3.4 shows the integration of time series aggregation into the optimization

model in order to keep it computationally tractable. The chapter closes with a dis-

cussion of the advantages and limitations of the whole building model in Section 3.5

and a summary in Section 3.6.

3.1 Residential electricity load

Residential electricity demand profiles for different buildings are required as a ba-

sis to predict the electricity load supplied by the grid and the building integrated

supply technologies. In order to find sufficient profiles, Section 3.1.1 discusses the
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Figure 3.1: Work flow and structure of the single building optimization. The num-

bers in the orange bubbles refer to the related section numbers in this chapter. The

gray bubbles relate to additional databases, parameters and submodels which are

introduced in the appendix or the scenario definitions.

requirements of such for this work and analyzes the suitability of existing load mod-

els. Based on the discussion, a model is chosen and its new implementation and

adaption to fit the scope of this work are shown in Section 3.1.2. Section 3.1.3

validates the resulting model.

3.1.1 Existing electricity load models

Since many different reference profiles or profile generators exist in the literature,

first the requirements of the profiles for this work are defined to evaluate the suit-

ability of the approaches:

• The shape and variance of the profiles on different temporal and spatial ag-

gregation scales have to be correctly covered. They impact highly the pre-

diction of self-consumption [Linssen et al., 2015; Stenzel et al., 2016; Beck

et al., 2016] and with it the optimal investment and operation behavior, e.g. of

battery storage systems [Ratnam et al., 2015].
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• It should consist of different appliance loads in order to evaluate appliance-

specific efficiency measures as well as demand side management potentials.

• Consistent profiles of the related occupancy behavior are needed to

parametrize the heat load optimization later introduced, e.g. to respect in-

ternal heat gains or occupancy dependent thermostats.

• The load generator should be computationally efficient in order to calculate

many different profiles for an increasing number of households.

Reference profiles

Probably the load profile most often considered is the Standard Load Profile - H0

[BDEW, 2011], which is a representative 15-min resolved electricity load for the

residential sector. It consists of representative days differentiating between week-

days, Saturdays and Sundays, as well as winter, summer and transitional periods.

An annual profile is created by chaining these days for a specific year and scaling

them by a seasonal correction factor. The drawback of the resulting profile is that it

does not cover the variance of a single household and makes it only suitable for an

analysis of aggregated groups of households.

The VDI 4655 [VDI, 2008] introduces representative load profiles of single and

multi-family houses for electricity, water and heating. It is based on measured load

data with a 1-minute or 15-minute resolution that is aggregated to the most repre-

sentative daily load shapes for weekday and weekend days and adapted to specific

climate conditions. Although the load profiles are representative for a single build-

ing, they are not useful for describing the aggregated load of a whole building stock

since the statistical balancing of fluctuating peak loads between different houses

cannot be covered with a single profile.

A large residential load profile database is provided by Tjaden et al. [2015]. It con-

sists of 74 electricity load profiles of residential buildings on a 1-second resolution

for a whole year. The data set is synthetically generated based on two measured

load data sets on different time resolutions. It is able to represent the load fluctua-

tion for a single household on a high temporal resolution, as well as the fluctuation

for a small district up to 74 buildings. Nevertheless, the devices laying behind the

load and the related occupancy behavior is unknown. Therefore it is not suitable for

this work. Still, it is especially useful for the validation of modeled load profiles.
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Profile generators

Besides some exceptions [Paatero and Lund, 2006; Stokes, 2005], the majority of

the reviewed bottom-up profile generators are based on the idea of a probabilistic

occupant behavior model of which the appliance usage and their related loads are

derived. The advantage of the probabilistic approach is that it creates good profiles

for single buildings as well as for whole districts or building stocks.

An early approach of such a model was proposed by [Capasso et al., 1994], which

derives the single occupancy behavior from a probability function with a Monte

Carlo simulation. The motivation to develop the model is to extract the demand-

side-management potential of the residential sector in Italy. Although the approach

seems promising, the data behind it and the programmatic implementation are not

available.

Two similar approaches were published by Widén and Wäckelgård [2010] and

Richardson et al. [2010][Richardson et al., 2009, 2008]. They use a model that

simulates first the activity of occupants with a Markov chain. The related transition

probabilities are derived from time-of-use surveys, once for Sweden and once for

Britain. The advantage of the model from [Richardson et al., 2010] is that its Excel-

VBA implementation is open-source available as CREST Demand Model [CREST,

2017] and it has been further enhanced by McKenna and Thomson [2016] to incor-

porate hot water and heat demand besides the electricity load.

MARKOV CHAIN:

A Markov chain, named after the mathematician Andrei A. Markov, is ”a stochas-

tic model describing a sequence of possible events in which the probability of

each event depends only on the state attained in the previous event.” Source:

https://en.oxforddictionaries.com/

An advanced profile generator for Germany was developed by Fischer et al. [2015],

named synPRO. It is able to respect different household sizes as well as certain

occupancy classes. It also generates stochastical occupancy behavior based on a

time-of-use survey of Germany. Although the content-related suitability for this work

is high, it is commercially distributed and the source code not publicly available,

making it not applicable for this work.

The most sophisticated profile generator was developed by Pflugradt [2016]. It sim-

ulates the behavior based on the desire of the occupants and derives therefrom the

load of the used appliances. It is able to generate profiles for occupants differing by,

e.g., age, sex, sick days per year and their related differing desires. Yet, the degree

of detail required to parametrize single households exceeds the scope of this work.
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Additionally, its implementation as a Windows program makes it difficult to transfer

it to different environments, such as Linux-based high performance computers.

All in all, the CREST [CREST, 2017] load generator is evaluated here as the most

suitable since it has a high temporal resolution, differs between a variety of appli-

ances and respects the stochastic load smoothing effects between different house-

holds. Further, it is available as open-source software, well-documented and pro-

vides a sufficient differentiation of the households by the number of occupants.

3.1.2 Extension of the CREST model

The overall idea of the CREST model developed by Richardson et al. [2010] can

be summarized as follows: First, the model simulates the activity of the occupants

in the household based on a Markov chain, either if they are active or not active. In

case they are active, the generator determines what activity is performed based on

a probability distribution, e.g. for cooking. Following on these specific activities, the

use of the household owned appliance is triggered and their electrical load derived.

The main inputs to the model are the probabilities of ownership of the different

appliances, their electricity load, time-of-use surveys of the residents and weather

data.

The evolution of the CREST load model by McKenna and Thomson [2016] is not

required for this work since it mainly extends loads of the heating devices. Though

the operation of the heating can be optimized and does not determine a strict final

demand, such as e.g. the operation of a television. Therefore, this work incor-

porates instead a heat model integrated into the optimization model, introduced in

Section 3.2.

The model received the following modifications and extensions to make it usable

for this thesis:

• The Excel-implementation is replaced by an object-oriented Python module -

enerload - in order to reach an automated workflow that is able to generically

create load profiles [Becker, 2016].

• The occupancy model by Richardson et al. [2010] had a two-state activity

approach (active/not active). Since the heat model also needs states like ”not

active, but at home, e.g. sleeping” to provide thermal comfort, the four-state

occupancy model from McKenna et al. [2015] is implemented.

• The model should be used for many different building types and household
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combinations. Therefore, it is parallelized to produce annual time series for

many different households at the same time [Röben, 2017].

• The original light load model was mainly based on light bulbs. Nevertheless,

the EC Regulation No. 244/2009 [EU, 2009] banned those. The impact can

already be identified in the change of the load profile. Therefore, the light

model has been updated to a distribution of bulbs, halogen lamps and LED

lamps, based on the values of UBA [2017a].

• The hot water demand can be extracted as an independent load profile in

order to also supply it by other options than electric boilers.

• The model by Richardson et al. [2010] was not able to sufficiently cover the

seasonal variations of the electricity load. Therefore, a correction factor has

been introduced that varies the load depending on the position of the day in

the year. Its derivation and description are found in A.1.2.

The model provides occupancy data on a 10-minute resolution and appliance load

data on a 1-minute resolution. Since this level of detail would burst the optimization

framework, the load profiles are downsampled either to a 15-minute or 60-minute

resolution. In order to avoid smoothing effects due to averaging of the profiles

[Stenzel et al., 2016][Kotzur et al., 2018a], the downsampling is done by choosing

every N-th value instead of the average value.

The final workflow, including the sub-models, can be seen in Figure 3.2. On the left

side are the considered databases listed. They are used to parametrize n different

Electrical Load Profile (ELP) objects. A single ELP consists of an Occupancy ob-

ject, an Appliance object and a Light object. The results of the Occupancy object

define thereby the input to the Appliance and Light object. The different objects are

given together to a manager module that simulates different ELP objects in parallel

and collects, aggregates and downsamples the resulting load profiles.

3.1.3 Validation and parametrization

The resulting load model is validated by comparing it to the Standard Load Profile

(SLP) for households [BDEW, 2011] as the most prominent representative profile in

Germany. The second validation set is the residential measurement based building

data from Tjaden et al. [2015], created at the Hochschule für Technik und Wirtschaft

Berlin (HTW).

In order to validate the profile generator, 1000 profiles for the year 2010 were cre-

ated while the different household sizes were chosen such that they fit the overall
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Figure 3.2: Workflow and structure of the enerload module, which is used to create

the aggregated, annual profiles for n different households.

distribution of the household sizes in Germany, shown in Table 3.1. Based on those,

an aggregated profile is created, which is scaled to the average annual demand of

a single household of 3515 kWh per year in 2010 [BDEW, 2014]. This is done as

well with the SLP and the aggregated profile based on the measured 74 data sets.

The resulting profiles can be seen for three example days in Figure 3.3. The overall

appliance loads are grouped into certain categories, such that the load share of

the different appliance groups can be identified. Hot water and heating are here

included in the profile since they are also included in the validation profiles. Nev-

ertheless, for the later stock optimization, they are excluded and scaled separately

since they are flexible and covered by the heat supply side.

Table 3.1: Distribution of household sizes in Germany based on the Census [Bun-

desamt, 2011].

Persons per household 1 2 3 4 ≥5

Number in 1000 13961 12456 5455 3906 1793

A qualitative observation shows that the model is able to cover the main daily vari-

ation patterns appearing in the SLP and the average HTW profile. A systematic

over- or underestimation at certain time periods is not recognizable. This is also
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Figure 3.3: Example extraction of three days for the profile generated by 1000

runs of the load model, in comparison to the Standard Load Profile and an average

profile of 74 measured residential buildings.

constituted by the integration of more efficient light bulbs since the model showed

an overestimation of the cumulative electricity load in the evening hours with the

original bulb loads. The numerical analysis supports the accuracy of the model:

The Root-Mean-Squared-Error (RMSE) between the model and the SLP amounts

to 7.06 %, between the model and the measured data 8.54 %, and between the

measured data and the SLP 8.15 %. The distribution of the deviation between the

three profiles can be found in A.1.3. Since the deviations of the model to the two

validation profiles are in the same magnitude as the deviation between the two val-

idation profiles themselves, it is concluded that the model describes the shape of

the electricity load profiles on an aggregated level sufficiently.

An advantage of the load generator to the simple consideration of SLP or the mea-

sured data is that appliance loads or type loads can be identified: The load de-

termined by cooling devices, e.g. a refrigerator, aggregates to a base load that

is almost constant for the observation period. The consumer appliances, such as

television, have a constant load share due to standby activities and a daily variation

related to the occupancy activity, peaking in the evening. Electricity loads related to

cooking, hot water, and washing are highly correlated to the activity patterns of the

occupants and drop almost to zero at night. The lighting load peaks in the evening

hours, apart from a small base load during the day.

Since the appliance data set is still based on statistics in Britain, the resulting load

share of each device group is validated with German statistical data [BDEW, 2013].
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The comparison is shown in Figure 3.4. Since it is not clearly defined which exact

appliance is related to which group, the evaluation can only be qualitatively exe-

cuted. A part of the electricity load in the statistical data is related to other loads

(e.g., wellness, garden, etc.), which are not represented by the considered load

generator. Instead, the model has a small share of electric heater loads, which are

not present in the BDEW data, and a higher share of consumer applications. While

washing and lighting have almost a perfect fit, the load required for cooling is a little

bit higher in the statistical data (16.7% to 14.0%). A further deviation exists in the

electricity required for hot water and cooking where the model based on the UK

data has a higher share in the overall load. An explanation for this could be that

in Germany a higher share of those are covered by gas boilers instead of electric

heaters.

Figure 3.4: The distribution of the electrical device consumption of the considered

load model for 1000 runs, in comparison to the distribution of the device consump-

tion of households in Germany, 2013 [BDEW, 2013].

It is concluded that the deviations of the distribution of the device loads are in a

tolerable range because of the uncertainty of the statistical data. Nevertheless, the

integration of statistical data about the household device equipment in Germany

could improve this in the future.

Another advantage of the model to the simple profiles is highlighted in Figure 3.5,

which shows the duration curves of different load profiles on a log-log scale. While

above only the profiles on an aggregated level are discussed, this figure also shows

the duration curves of single generated household loads together with the single

loads of the measured data. It clearly indicates how much higher the fluctuation of a

single profile is in comparison to an aggregated load, and with it also the occurrence

of peak loads. The model is able to cover this stochastic causality, which is, e.g., not
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represented in the SLP. The duration curve of the SLP aligns somewhere between

100 and 1000 averaged profile runs of the model, indicating as expected that it is

just sufficient to represent whole districts but not single households.

Figure 3.5: Duration curves of the electricity load of the model for different numbers

of households (n), in comparison to the duration curve of the SLP and the average

measured profile. All profiles are normalized to a typical electricity consumption of

3515 kWh/a.

All in all, the model fits all main requirements listed in Section 3.1.1.

3.2 Thermal building load

The second relevant energy demand is the residential heat load. In order to

find good models predicting such, again Section 3.2.1 discusses the existing ap-

proaches in terms of their suitability for this thesis. Based on this, a model is chosen

and extended to fit the scope of this work, shown in Section 3.2.2. Section 3.2.3

validates the resulting model for German archetype buildings.
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3.2.1 Existing thermal building models

The most popular thermal building model is EnergyPlus [EnergyPlus, 2017] de-

veloped by the National Renewable Energy Laboratory (NREL) , which offers a

large variety of functions and customization for building simulations in general. It

has a high degree of detail and an integrated simulation algorithm. It provides a

Functional Mock-up Interface (FMI) to integrate it into model chains such that it

can be programmatically accessed. This is, e.g., done by Evins [2015] who iter-

atively calculates the heat load for different retrofit cases of a single building and

attaches a supply system optimization behind. The drawback of this approach is

that many different supply optimizations have to be calculated in order to find an

optimal combination between retrofit and adaption of the supply system, which is

computationally inefficient. Additionally, no exact statement can be given about the

optimality of the results.

FUNCTIONAL MOCK-UP INTERFACE:

”Functional Mock-up Interface (FMI) is a tool independent standard to support

both model exchange and co-simulation of dynamic models using a combination

of XML-files and compiled C-code.” Source: http://fmi-standard.org/

Wu et al. [2017] also incorporates a variation of EnergyPlus simulations into its

supply system optimization. Nevertheless, it is no iterative procedure, instead, all

retrofit options and the resulting demand profiles are calculated a priori and given

as single investment options to the optimizer. Although the approach is quite in-

teresting, one drawback could be that all cross combinations of retrofitting options

have to be implemented as single binary options, e.g. change windows vs. change

windows and change wall, constituting many binary variables in the optimization

framework, which is computationally heavy. The second disadvantage is that the

operation of the heating system is detached from the operation of the supply sys-

tem. Therefore the heat storage capacity of the building cannot be considered.

These drawbacks would also apply for approaches with other simulation environ-

ments like TrnSys [TrnSys, 2018], which is, e.g., used in an iterative optimization

by Diakaki et al. [2013], or the Modelica library AixLib developed by Müller et al.

[2016]. Therefore, this work trades the accuracy of predicting the thermal load by

those simulation environments to a lumped building model. It can be integrated into

the overall mathematical program directly with the advantage of a better computa-

tional performance.

This type of lumped modeling of thermal building systems is state-of-the-art for

Model Predictive Controls (MPC) or operation optimizations. Kossak and Stadler

[2015], e.g., developed a 1R1C model in order to predict the heat load of a campus
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building and clarify the importance to consider the thermal mass for an accurate

model. Fux et al. [2014] compared different lumped parameter models from 1R1C,

2R1C, 3R2C up to 6R4C for the MPC of a six-story timber building in the Alps.

De Rosa et al. [2014] even introduced a model that has an electrical analogy of

23R7C as an alternative model to EnergyPlus or TrnSys and validated it for different

locations.

LUMPED MODEL:

A lumped model reduces the complex spatially distributed physical behavior of a

system into a topology of discrete lumps (usually electrical circuit analogies) that

approximate the original behavior. Those lumps can be given by the number of

Resistances (R) and number of Capacities (C), comprising the models to xRxC

equivalents.

Although a high order model is predicted to have more accurate results, they also

have to be parametrized. An MPC is often able to parametrize itself with measured

data. This would not be possible for the buildings in this work where many types are

considered with a simplified parameter set. Further, Fux et al. [2014] predicted an

RMSE of 0.68 ◦C between a measured room temperature and a room temperature

predicted by a 1R1C model. This accuracy exceeds the accuracy required for this

work because the uncertainty of the input parameters has a higher impact.

Nevertheless, in comparison to the MPC approaches, the mathematical program in

this work has to account for two features:

1. Respecting investment decision into the building envelope simultaneously

with the design optimization of the supply system.

2. Considering the thermal building mass together with the operation of the sup-

ply system.

In the context of a supply system design optimization, Ashouri et al. [2013] intro-

duced a 1R1C model that respects the thermal building mass as storage to enable

a more flexible operation of the heating system. Nevertheless, the parameters are

defined as constants because no envelope optimization is considered.

On the other hand, Stadler et al. [2014] introduced the envelope optimization into

the framework DER-CAM by creating different heat load profiles for different insu-

lation measures. The mathematical program gets the level of freedom to choose

between the profiles with different cost, similar to the approach of Wu et al. [2017].

Schütz et al. [2017a] combined these works and introduced a 5R1C model that
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respects envelope investment decisions simultaneously with the thermal storage

capacity of the building. It is based on the EN ISO 13799 [EN ISO, 2008]. The

additional resistances are capable of respecting the solar and internal heat gains

with a higher accuracy than a 1R1C model. Further, it is validated to the VDI 6007

[VDI, 2015] and shows a good alignment for the annual heat demands and the peak

loads. Only the cooling demands are overestimated, which is not relevant for this

work since they are not considered in the optimization.

3.2.2 Extension of the 5R1C model

The detailed description of the mathematical model itself is done by Schütz et al.

[2017a]. Hence, this section only describes its extensions and integration into the

overall model. Section 3.2.2 describes the configuration procedure of the model,

sometimes also referred to as data enrichment tool. The integration of the thermal

comfort zone of the occupants is described in Section 3.2.2.

Building configuration

The structure of the configuration of the model can be seen in Figure 3.6. Every

building is defined by a set of input parameters that characterize it, e.g. the living

area, the number of inhabitants or the construction year. These input parameters

are used to get the relevant data that physically describes the building. The main

data source for this is the building data from the Institut für Wohnen und Umwelt

(IWU), which states a representative building stock for Germany [IWU, 2010]. It

includes non-refurbished and refurbished buildings for different types and construc-

tion years. In the framework of the EPISCOPE project [EPISCOPE, 2016], building

types representing the building stock of other European countries have been made

available as well and could be equivalently integrated into the model of this work.

The configuration can be done either by choosing one specific building type from

which the shape, e.g. roof area, and the envelope fabric, e.g. the heat transfer

coefficients of the walls, are derived. Alternatively, buildings can be parametrized by

considering the most similar IWU-type building as the reference and then adapting

the scale of the shape to the required scale. Thereby, the number of floors is fixed

while the walls, floor area and roof area are scaled to the new reference area. The

building types are illustrated further in Appendix A.2. The fabric depends on the

building year, with the exceptional case that it has already been refurbished. In this

case, the fabric standard of a construction date 40 years younger than the original
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Figure 3.6: Workflow and structure of the enerbuilding configuration module, which

is used to set up the thermal 5R1C model based on the building parameters of the

IWU database and the occupancy data of the enerload module.

construction date is considered, which refers to the typical time of a refurbishment

cycle [Beuth, 2015].

The weather data is derived from the DIN EN 12831 [DIN, 2014] by finding the clos-

est location listed. Therefrom, the minimal design temperature is derived as well

as the test reference region of the Deutsche Wetter Dienst (DWD) [DWD, 2012].

Alternatively, the weather data from COSMO rea-6 reanalysis data set [Bollmeyer

et al., 2015] can be used for real years.

The weather data set is then first used in the enerload module (Section 3.1) to-

gether with the number of apartments and the number of inhabitants to calculate

the occupancy behavior and appliance load. Since the internal heat gain has for

refurbished buildings a significant impact on the effective energy demand [Elsland

et al., 2014], it is dynamically calculated, while for active occupants an average

heat gain of 150 W and for sleeping occupants an average heat gain of 100 W is

assumed [VDI, 2012]. The internal heat gains from the appliances are derived from
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their electricity load based on the appliance-specific values introduced by Degefa

et al. [2015].

As a last configuration step, the radiation on the tilted areas, such as windows, has

to be calculated since it is only provided as Direct Horizontal Irradiation (DHI) and

Diffuse Horizontal Irradiation (DNI) by the test reference year [DWD, 2012]. Instead

of the radiation model introduced in the work of Schütz et al. [2017a], this work

uses the irradiance calculation included in the PV-lib [Andrews et al., 2014] and

the integrated Perez model [Perez et al., 1987]. The so calculated time series and

parameters are then given to the mathematical 5R1C program that describes the

thermal behavior of the considered building.

Thermal comfort

A further extension is a new model for the thermal comfort of the occupants. Schütz

et al. [2017a] provides only a lower bound for the required internal air temperature

Tair, aligning with today’s standards. This is sufficient to model the theoretical heat

demand. Nevertheless, it is more realistic is to consider an indoor temperature with

a night reduction or a shut-off of the heating system in case nobody is at home. It

further constitutes a more volatile operation of the heating system.

The relevance of this temperature variation is highlighted by Marshall et al. [2016].

They conclude that in case the building is not fully occupied, a reduction of the in-

ternal temperature and partial spatial heating (zonal heating) can achieve similar

savings as more expensive efficiency measures, like changing the wall insulation.

Further, Oldewurtel et al. [2013] developed a Model Predictive Controller, which

uses occupancy information in order to achieve a more energy efficient office build-

ing climate control. Although they clarify that the impact is highly dependent on

the occupancy patterns, duration of vacancy etc., they conclude that savings up to

34% can be achieved. Additionally, they show that similar savings can already be

achieved with a well-chosen fixed scheduling of the heating system.

To account for the indoor air temperature variation Tair,t in every time step t, referred

to as θair by Schütz et al. [2017a], the original equation from Schütz et al. [2017a]

is replaced with the following constraints as lower bound:

Tair,t ≥ +T com
air,lb

−
(

T com
air,lb − T sle

air,lb

)

xslet δsle

−
(

T com
air,lb − T vac

air,lb

)

xvact δvac

∀ t (3.1)
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T com
air,lb describes the lower bound (lb) of the comfortable air temperature and is basi-

cally the set point temperature defined by the occupants. For the default case, the

same set point temperature of 21◦C as in Marshall et al. [2016] is assumed.

This temperature can be reduced to T sle
air,lb in case the occupants are sleeping.

This sleeping behavior is described by the time series xslet which represents the

share of occupants sleeping in ratio to all occupants living in the building at every

time step t, calculated from the occupancy activity given by the enerload model.

δsle describes the binary decision if a night reduction is integrated into the heating

system. Equivalently, the time series xvact describes the share of occupants that are

not at home, or rather the relative vacancy of the building, and T vac
air,lb the minimal

building temperature. The existence of an occupancy controller in the building is

described by δvac.

The upper bound of the temperature T com
air,ub limits the heating operation and deter-

mines the cooling load in the summer period with the following constraint:

Tair,k ≤ +T com
air,ub

−
(

T com
air,lb − T vac

air,ub

)

xvact δvac
∀ t (3.2)

Thereby T vac
air,ub is the maximum temperature inside the building in case no occupant

is present. The general upper bound for the temperature is set to 26◦C.

Figure 3.7 illustrates the difference of the heat load in case a constant air temper-

ature is set as a lower bound (fix demand) to the case when the temperature level

is dynamically adapted to the occupancy behavior (with control). The second case

is here illustrated for an ideal heating operation where the whole heating system is

automatized, meaning that smart thermostats are integrated to the whole building.

Since the majority of today’s buildings do not own such controllers, its investment

is later set as an optimization decision.

The operation tries to minimize the heat load with the consequence that the air

temperature aligns with the lower bound of the air temperature, as introduced in

equation 3.1. As expected, the air temperature of the smart control case directly

correlates with the activity of the occupants. With it, not only the indoor air tem-

perature fluctuates but also the building mass temperature has a higher variation,

still damped by its thermal inertia. This inertia is highlighted in the period between

23:00 of the 16. February and 9:00 of the 17. February where the first order delay

behavior is recognizable.

The lower bound of the air temperature is for the control case set higher (21 ◦C)

than the overall lower bound of the air temperature for the fix demand case (20 ◦C).
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Figure 3.7: Example heating system operation and resulting air and mass temper-

atures depending on the occupancy activity.

Nevertheless, the resulting mass temperature of the control case is always below

the mass temperature of the fix demand case. The reason is that a full up-heating

of the mass is not required for the short time frames when occupants are active.

The advantage is a reduced heat transfer to the environment and with it a reduced

cumulative heat demand.

Nevertheless, this rapid heating and cooling of the air and thermal mass require

a much more flexible operation of the heating system, shown in the resulting heat

load profiles. This fluctuating operation would occur in a reduced manner in a real

system in order to minimize degradation effects of, e.g., the valves. A reduction of

the fluctuation would also be expected in the later overall system model incorporat-

ing the supply system optimization since the heating devices, e.g. the heat pump,

will technically constrain the heat load. This does not apply for the here considered

example.

3.2.3 Validation and parametrization

Although the model has already been validated for a single building by Schütz et al.

[2017a], it is validated further for this work because the whole building configuration

has been modified and extended.
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The data set from the IWU building topology is used as the validation and

parametrization set. It describes a national building stock by so-called reference

or archetype buildings. Their creation is explained in Ballarini et al. [2014]. The

data set consists of the technical envelope described by U-values etc. and shape

values such as wall areas in different orientations. The reported heat capacity val-

ues cm of 45 Wh/m2/K of the IWU buildings are considered for the parametrization.

These values are the same for all buildings. In reality, they would vary between the

buildings because of the different materials and thicknesses used in the different

constructions. Nevertheless, this inaccuracy is constituted by a lack of data.

These values are used to parametrize the introduced dynamic 5R1C heat load

model where all buildings are considered to have a temperature tolerance of 20 ◦C

to 26 ◦C and two occupants per apartment. The 5R1C model is once optimized with

a fix lower bound of 20 ◦C, once with a night reduction to 18 ◦C and once with the

introduced occupancy controller. The test reference year of Potsdam, Germany

[DWD, 2012] is considered for the weather data. The resulting time series are

summed up to an annual heat demand for every building type. These values are

finally compared to the predicted annual heat demand of the IWU database.

The comparison of the resulting values can be seen in Figure 3.8. Although none

of the 5R1C simulations do perfectly fit with the static calculated IWU values for all

building types, the general trend of different specific heat loads for different building

ages and types is represented. The reported annual heat demands of the IWU

database in general align between the 5R1C model with a fix temperature with a

RMSE of 6.82 kWh/(a m2) as upper bound and the model with a night reduction

with a RMSE 6.79 kWh/(a m2) as lower bound. This matching is sufficiently good,

since the IWU model just uses aggregated values like absolute numbers of heating

days, correction factors for the night reduction, or absolute cumulative solar gains,

while the 5R1C model simulates this all for every hour in a year.

The heat demand is reduced from the 5R1C simulation with a fix temperature to

the 5R1C model with the occupancy controller between 15.5% and 19.2%. This is

below the savings of 34% reported by Oldewurtel et al. [2013]. Nevertheless, their

application focused also on an office building that is less frequently occupied than

an residential building. Summarized, the potential of energy savings by such smart

controllers are significant but the absolute saving potential especially for buildings

with a low energy demand is limited.

The validation illustrates further the different heat demands of different building

types and ages. Multi-family houses have in general smaller energy demands

than single-family houses due to better area-to-volume ratios. Further, terraced

single-family houses also have smaller energy demands than detached single-

family houses, since less exterior walls transfer heat to the ambient air. The en-
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Figure 3.8: Comparison of the annual heat load provided by the IWU database to

the heat load dynamically calculated with the considered 5R1C model. for a generic

set of archetype buildings.

ergy demand is decreasing with newer construction years due to better insulation.

Nevertheless, it is not strictly decreasing, which is constituted by different building

shapes and orientations between the construction years. E.g. the increase of the

energy demand between the 2002 and the 2010 single family house is constituted

by less south oriented window areas in the newer building, resulting in less solar

heat gains.

All in all, together with the validation of Schütz et al. [2017a], a sufficient accuracy

of the optimization integrated heat model can be concluded.
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3.3 Supply system optimization

The following section introduces the model generator enercore for building flexible

different configurations of energy supply systems to satisfy the energy demand of

the shown load models. As discussed in Section 2.3, the focus of the optimization

model is its high performance because many different building types have to be op-

timized. Therefore, the investment costs of the technologies are approximated with

a single binary and a single continuous decision variable. Section 3.3.1 introduces

their integration to the overall cost function that gets minimized. The operation of

the technology classes is kept continuous and linear, as shown in Section 3.3.2.

The nonlinear behavior of the thermal components is separately modeled with a

continuous linear approximation for different discretized supply temperature levels,

described in Section 3.3.3. The generation of feed-in profiles for the photovoltaic

and solar thermal collectors is introduced in Section 3.3.4 and Section 3.3.5. The fi-

nal superstructure of the considered building model is summarized in Section 3.3.6.

Figure 3.9: A simplified Class Diagram of the enercore.energysystem module

defining the different technology classes and its association with the overall tech-

nology network.

The framework is an object-oriented Python package that introduces classes for

different energy technology categories. Based on those, instances can be derived

and parametrized to represent real energy system components. A network of them

defines the overall superstructure of the energy supply system, which is optimized

in terms of structure, scale and operation. Its programmatic implementation is il-
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lustrated as a class diagram in Figure 3.9. It is set up in the Pyomo modeling

environment [Hart et al., 2011].

3.3.1 Objective functions

Since a trade-off between the economic and the ecologic objectives shall be made,

a multi-objective or multi-criteria optimization is required. For this work, either a

linear scalarization or the ǫ-constraint approach [Haimes et al., 1971] can be used.

Both approaches are able to consider two objectives (ω1,ω2) in a single objective

environment. The linear scalarization adds the single objectives in a single function

with different weightings. The ǫ-constraint approach solves both objectives once

independently and then divides the solution space in between into a defined number

of intervals which are independently optimized. One objective is set as a constraint

and the other objective is optimized. This results in a Pareto front which can be

used to evaluate the trade-off between the two goals. A more detailed description

can be found, e.g., in Wu et al. [2017]; Schütz et al. [2017a].

In the following, the objectives are introduced, which are the annual energy cost,

including the discounted investment, and the direct and indirect operation related

CO2 emissions. Life cycle related emissions due to manufacturing or disposal of

technologies are not considered.

Annualized energy cost

The first objective function describes the annualized cost of the supply system con-

sidered. Therefore, for each technology d, the annualized costs are calculated with

a capital recovery factor CRFd, which considers the Weighted Average Cost of

Capital WACCd and economic lifetime τd of the technology in years:

CRFd =
(1−WACCd)

τdWACCd

(1−WACCd)τd − 1
(3.3)

A simplified consideration of the economy of the scale is considered, as discussed

in Section 2.3: The capital expenditures of each technology are divided into the

existing related costs [eur] that only appear if the technology is installed, and spe-

cific costs [eur/kW] that are scale-dependent [Lindberg et al., 2016a]. Therefore,

each technology has to be modeled by a binary variable δd that defines whether the

component exists, and a continuous variable Dd that defines the installed capacity

of the component. The full resulting technology specific annualized fixed cost can

then be calculated with the existing related capital expenditure (CAPEXexist), the
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scaling-related capital expenditure (CAPEXspec), and fixed operational expenditure

(OPEXfix,d) as follows:

cexist,d = CAPEXexist,d (CRFd +OPEXfix,d)
cspec,d = CAPEXspec,d (CRFd +OPEXfix,d)

(3.4)

The costs, which vary with the operation of the system cvar,i,j,t, are related to the

energy flows Ėi,j,t between the technologies. Along with the scaling of the tech-

nologies Dd, the following objective function can be stated

min
∑

d

[cexist,dδd + cspec,dDd] +
∑

(i,j)∈L

∑

t∈T

cvar,i,j,tĖi,j,t△t (3.5)

which minimize the total annual energy cost.

Annual greenhouse gas emissions

The second objective is the minimization of the direct and indirect operational GHG

emissions. Each energy flow Ėi,j,t can have a defined GHG footprint γi,j,t which

is optionally time-variant. Based on this, the operational emissions are defined as

follows:

min
∑

(i,j)∈L

∑

t∈T

γi,j,tĖi,j,t△t (3.6)

The introduced footprint is mainly used at the input energy flows of the network

since the imported electricity or fuels constitute the operational GHG emissions.

3.3.2 Technology classes

The network of specific technologies is connected by energy flow variables Ėi,j,t for

every time step t ∈ {1, ..., Nt}. Each connection is therefore defined by an output

technology i and input technology j and belongs to a connection set (i, j) ∈ L.

Further, every connection belongs to an energy type ǫ((i, j)). The energy flows of

the connections are restricted by the technology models introduced.

The technology models establish the constraints of the system. They are divided

into four classes, namely: Source/Sinks, Collectors, Transformers and Storages.
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The Source/Sink class q represents input and output flows to the system, such

as photovoltaic feed-in or electricity demand. It is essentially defined by a single

equation:

ηlb,q,tDq ≤
∑

(q,j)∈L

Ėq,j,t +
∑

(i,q)∈L

Ėi,q,t ≤ ηub,q,tDq ∀ t, q (3.7)

where ηlb,q,tDq could be a certain demand that must at least be satisfied at time

step t, or ηub,q,tDq could be the maximum specific photovoltaic feed-in per. Dq is

the scale of source or sink.

The Collectors class n can be seen as a hub in which all input energy flows must

be equivalent to all output energy flows:

∑

(i,n)∈L

Ėi,n,t −
∑

(n,j)∈L

Ėn,j,t = 0 ∀ t, n (3.8)

The Transformer class f represents technologies that transform the energy from

one form to another. Examples include gas boilers, fuel cells or heat pumps. For

the definition of those, the energy type (electricity, gas, etc.) ǫ is required. Further,

a set of transformation paths (ǫin, ǫout) ∈ P (f) is defined for every transformer.

Thereby, every path has a defined transformation efficiency ηf,ǫin,ǫout from energy

form ǫin in energy form ǫout. With those, the following equation can be stated for

each Transformer in the system:

ηf,ǫin,ǫout

∑

(i,f)∈L|ǫin((i,f))

Ėi,f,t =
∑

(f,j)∈L|ǫout((f,j))

Ėf,j,t ∀ (ǫin, ǫout) ∈ P (f) ∀ t, f

(3.9)

Basically, it states that all incoming energy flows of a certain energy type are in sum

converted to a set of outgoing energy flows belonging to another energy type. E.g.

for the case of a CHP unit, all incoming gas flows are converted with a fix efficiency

to the sum of all outgoing electricity flows. The second path would be that the same

gas flows are also converted to a set of outgoing heat flows.

Further, every Transformer f has an energy form ǫf that is limited by the Trans-

former capacity Df , e.g. the generated electricity in case of a CHP unit:

∑

(i,f)∈L|ǫf ((i,f))

Ėi,f,t +
∑

(f,j)∈L|ǫf ((f,j))

Ėf,j,t ≤ Df ∀ t, f (3.10)

The Storage class s is defined by an additional variable namely the State of Charge

SOCs,t at every time step t. The Euler method is used to derive the state of charge
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in the next time step SOCs,t+1:

SOCs,t+1 = SOCs,t(1− η
self
s ∆t)

+ηchars

∑

(i,s)∈L

Ėi,s,t∆t

− 1
ηdiss

∑

(s,j)∈L

Ės,j,t∆t

∀ t, s (3.11)

where Ėi,s,t describes the charging flow with an efficiency of ηchars and Ės,j,t the

discharging flow with related efficiency ηdiss . ηselfs defines the self-discharge of the

storage and ∆t the step length of a single time step. The state of charge at the

beginning of the considered time frame SOCs,1 is equal to the state of charge at

the end of the time frame SOCs,Nt+1 by a so-called cyclic condition.

The design variable of the storage s is described by its maximal net capacity Ds

and accordingly limits the state of charge:

SOCs,t ≤ Ds ∀ t, s (3.12)

The maximum charging and discharging flows are restricted by the capacity factor

Cs as follows:
∑

(i,s)∈L

Ėi,s,t +
∑

(s,j)∈L

Ės,j,t∆t ≤ CsDs ∀ t, s (3.13)

An additional constraint is required for all technologies to ensure that the existing

related variable δd is activated in case the technology is installed. It is done by a

so-called BigM Method [Bemporad and Morari, 1999], which restricts the scaling-

dependent device variable Dd as follows:

Mδd ≥ Dd (3.14)

The method is inspired by Stadler et al. [2014] and Lindberg et al. [2016a]. In order

to minimize the computational load, the BigM should be chosen as small as possible

[Bemporad and Morari, 1999], but big enough such that it is not restricting the

solution space. Therefore, it is here set depending on the scale of the considered

building, which determines the maximum scale of the technologies.

3.3.3 Heat supply model

Since enercore just defines the basis for flexible energy system models, some parts

are extended such that they are able to cover the varying operation conditions in a
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building. Especially the heat supply temperature has a high impact on the operation

of certain technologies. Therefore, it is illustrated and integrated into the model in

the following section for air source heat pumps, the heat storage and the building

heat demand.

Impact of heat supply temperature

The literature review, shown in Section 2.1, revealed that heat pumps are seen

as a key option to efficiently provide low-temperature heat for space heating by

pumping ambient heat to the required temperature level with the help of electricity.

As a reversely operated Carnot machine, their performance is dependent on the

temperature level of the heat source, the ambient temperature T amb for an air heat

pump, and the heat sink, the supply temperature of the heating system T sup.

Based on the Carnot cycle, their Coefficient of Performance CoPk can be expressed

as follows [Lauinger et al., 2016; Huchtemann, 2015; Zogg, 2009]

CoPt =
Q̇t

Pel,t

= ηC
T
sup
t

T
sup
t − T amb

t

(3.15)

where Pel,t is the electric power of the integrated compressor at every time step

t, Q̇k the provided heat, and ηC the quality grade of the heat pump system itself

respecting the non-ideal operation of heat pumps due to temperature differences in

the heat exchangers or electricity consumption of peripheral appliances.

Figure 3.10 illustrates the dependency of the CoP of the different temperature lev-

els. It shows once the simplified Carnot efficiency introduced in Equation 3.15 with

a quality grade of 40 % and validates it against manufacturer specifications and

measured data of air source heat pumps. First, the high variance of the manu-

facturer specifications for the same operation conditions in yellow is observable,

indicating the high performance range of different available heat pumps. The con-

sidered efficiency function aligns with the average of manufacture specifications for

supply temperatures of 35 ◦C and an ambient temperature of 2 ◦C and adjusts in

the lower range of the manufacturer specifications for an ambient temperature of 7
◦C.

The measured performance data set is given for a variance of ambient tempera-

ture levels and a supply temperature of 55 ◦C. The model is able to cover the trend

for reduced ambient temperatures and aligns again in the lower range of the re-

ported performance values. The considered quality grade ηC of 40 % assumed is

in comparison to the reported values rather conservative. Therefore, an increase
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of the quality grade to 45 % could respect future efficiency improvements of the

manufacturers.

Figure 3.10: Coefficient of Performance for different outside air temperatures, dif-

ferent supply temperatures. The dots for a supply temperature of 35 °C are differ-

ent manufacturer specifications, and the dots for a supply temperature of 55 °C are

measured values based on ISE [2011] and Sterchele et al. [2016]. The lines are

the efficiencies calculated with the Carnot efficiency and a quality grade of 0.4.

Considering an ambient temperature of 0 °C, the increase of the supply temperature

from 45 to 55 °C reduces the CoP from 2.73 to 2.23 for the considered quality grade.

For the same heat load, this would imply an increase in the electricity load of the

heat pump by 22 %. Keeping in mind that the overall goal of the work is to predict

the future grid related electricity load temporally resolved, such sensitivities are too

big to be neglected.

Nevertheless, this is often done in energy system design models where the CoP

is considered constant for the whole year [Ashouri et al., 2013; Evins, 2015; Wu

et al., 2017; Mashayekh et al., 2017], which causes an overestimation of the CoP

in winter and an underestimation in the summer. Lindberg et al. [2016b] solved this

issue by considering a heat curve beforehand, depending on the heating system

of the building. Such they get a CoP for every time step in the year before the

optimization.

For the case of this work, no heat curve can be defined a priori, since the required

heat load and related supply temperature depend on the occupancy activity, the

storage operation, and the optimal refurbishment level, as introduced in Section 3.2.

Therefore, the choice of the supply temperature should be an optimization variable,
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since its intelligent operation can maximize the overall efficiency of the heating

system. E.g., Huchtemann [2015] states that smart control, especially of the supply

temperature, is able to save between 9.6 to 29% of the electrical load of a heat

pump for the case of oversized heating systems. This would especially apply to

refurbished buildings.

A direct formulation of the supply temperature as continuous optimization variable

in 3.15 would constitute a nonlinear equation, which should be avoided. Therefore,

an alternative formulation is required that is able to account for different supply

temperature levels.

Besides the heat pump, the supply temperature is also relevant for the heat storage,

since the usable heat of the storage SOCmax
t depends on the temperature gap

between supply and return heat flow of the building. Wang et al. [2015] described

the usable storage inventory as follows

SOCmax
t = ρVstcp,W

(

T
sup
t − T ret

t

)

(3.16)

where Vst is the storage volume and T ret
t the return temperature of the heating

system. The additional temperature spreads of the heat exchangers considered by

Wang et al. [2015] are excluded. In comparison to their system, the heat storage in

this work is directly connected to the heating system.

Again, equivalent to the CoP description of the heat pump, a formulation of the

supply temperature as variable T
sup
t would constitute a Nonlinear Program (NLP)

in 3.16 since the storage volume Vst or rather the storage capacity is an optimization

variable.

The last relevant component influenced by the supply temperature is the heat flow

Qsup,t from the heating system to the building, which can be covered with certain

temperature levels. Higher supply temperatures constitute higher possible heat

loads since a better heat transfer is possible between the heating system, e.g.

the radiators, and the building. In case that a linear heating curve is assumed for

the building, the maximal possible heat load is qualitatively limited by the nominal

design heat flow Qnom
sup , the supply temperature T

sup
t and the indoor air temperature

T air
t as follows

Qsup,t ≤ Qnom
sup

T
sup
t − T air

t

T
sup
nom − T air

t

(3.17)

where T
sup
nom is the nominal design temperature.

The indoor temperature T air is here assumed as a constant and conservatively

assumed with the maximal tolerable air temperature inside the building.

It is referred to Huchtemann [2015] for more detailed models.
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Supply temperature discretization

Since the impact of the supply temperature to the heat pump performance is sig-

nificant but a correct mathematical integration would state an NLP, a discretization

approach of the supply temperature is introduced. It is similar to the two-level heat

storage model of Steen et al. [2015] but more generic and allows a more flexible

storage operation. The concept is illustrated in Figure 3.11.

First, an order of temperature levels with λ ∈ Λ are introduced for the supply

temperature T
sup
λ that are considered in the mathematical program. They define

possible operation conditions for the heating system. A higher number of levels

constitutes a more precise model but simultaneously increases the size and com-

putational load of it. The first temperature level is defined by the nominal supply

temperature T
sup
λ at which as default the heat supply technologies feed-in to the

system. These levels do not exist in parallel in a real system, instead, the real

operation temperature is represented by combination or superposition of these in-

troduced levels.

Figure 3.11: Illustration of the supply temperature discretization for the heat pump,

the heat storage and the heat supply.

Based on the levels, the CoP of the heat pump, introduced in equation 3.15, can

be calculated for every hour in the year and for all considered supply temperature

levels T
sup
λ . With those the performance of the heat pump can be described for all

time steps and temperature levels separately as:

Qhp,t,λ = Pel,t,ληC
T
sup
λ

T
sup
λ − T amb

t

∀ t, λ (3.18)

Although the heat pump can operate at different levels in the same time frame, all

technical constraints limiting the performance of the heat pump have still to hold for
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the aggregated heat pump load such that:

Qmax
hp ≥

∑

λ∈Λ

Qhp,t,λ ∀ t (3.19)

In consequence, the heat pump can only operate at a single temperature level with

the full load.

An equivalent formulation is made for the heat storage, which gets individual states

of charges for the different temperature levels SOCs,t,λ and individual state equa-

tions, as defined in Equation 3.11.

Assuming a constant spread between the supply and the return temperature, the

maximal state of charge has to hold for all states at the different temperature levels

together:

SOCmax
s ≥

∑

λ∈Λ

SOCs,t,λ (3.20)

The last equation that has to be adapted is the maximal heat supply for the different

temperature levels. It can be stated equivalent to Equation 3.17 as follows:

Qnom
sup ≥

∑

λ∈Λ

Qsup,t,λ
T
sup
nom − T air

T
sup
λ − T air

∀ t (3.21)

A reduced supply temperature linearly reduces the possible heat transfer to the

building.

All in all, this discretization allows continuous linear operation equations while re-

specting an adaption of the supply temperature to certain levels. Still, it is a sim-

plification that partially deviates from the reality, as reported for a similar approach

[Baeten et al., 2015]. E.g., the heat transfer inside the storage is neglected and

ideal stratification is assumed. Nevertheless, it is an improvement to the consider-

ation of a single supply temperature.

While in general a flexible number of temperature levels can be chosen, this work

uses three equidistant distributed temperature levels. Those are derived from the

maximal supply temperature of the building that states the maximum temperature

level.

3.3.4 Photovoltaic performance model

For the planning and operation of photovoltaic panels, a performance model is

needed to produce feed-in time series depending on the weather conditions, the
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geo-location of the building and its roof orientation.

Therefore, this work developed and validated in collaboration with the IEK-5,

Forschungszentrum Jülich a photovoltaic performance model, documented in the

master thesis of Meerts [2016]. It is based on the PV-Lib [Andrews et al., 2014],

which was developed at Sandia Laboratories. Different sub-models of the PV-Lib

are compared and validated against three measured data sets at different locations

in central Europe. The different model steps are illustrated in Figure 3.12.

Figure 3.12: Sub-models and steps of the photovoltaic performance model. In blue

are the steps considered in this thesis, while the gray boxes illustrate the additional

steps performed in the master thesis of Meerts [2016].

The original model is based on measured Global Horizontal Irradiance (GHI) from

satellite measurements and on reanalysis data for other climate parameters, such

as the ambient temperature. Therefore, sub-models are required, e.g., to distin-

guish the GHI to direct and diffuse irradiance in order to validate the photovoltaic

performance. This is not necessary for the final work since the test reference years

[DWD, 2012] are used that independently provides already diffuse and direct irra-

diance data.

Next, transposition models are required for the calculation of the Plane Of Array

(POA) irradiance from the horizontal irradiance. This can be straightforwardly per-

formed for the direct irradiance by a simple trigonometric function. Also, the ground-

reflected diffuse radiation can be isotropically calculated with the help of a ground

albedo coefficient, where a value of 0.2 is considered [Kotak et al., 2015]. Never-

theless, the transposition of diffuse radiation from the sky to the tilted plane is not

mature and many different models have been proposed for it. Their comparison is

further illustrated in Meerts [2016], while it can be concluded that the Perez transla-

tion model [Perez et al., 1987] outperforms the others. The trial to develop a novel

transposition model based on a Neural Network and different measurement data

sets was not able to outperform the Perez model.
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Afterwards, the module temperature can be calculated based on the irradiance, the

ambient temperature and the wind speed. Again, different models are evaluated

but no dominant one is found for the given data sets [Meerts, 2016]. Therefore,

this work stays with the empirical Sandia Array Performance Model (SAPM) [King

et al., 2004], which describes the thermal response with two coefficients for wind

and irradiance, specific to the module type.

The array performance can be calculated with the irradiance data and the module

temperature as the last step. Therefore, again the SAPM is used since it is widely

validated and has good performance [Meerts, 2016]. It is semi-empirical and can

reproduce the panel specific I-V curve based on five characteristic points, including

the Maximal Power Point (MPP), for all operation conditions. The required coeffi-

cients are empirically determined for different arrays [King et al., 2016] and provided

in a publicly available database.

In summary, a deviation between model and measurement of -3% to +2% results

for the yearly yield for the whole model chain with the weather databases as input

[Meerts, 2016]. The RMSE of the actual profile seem high with 35% and 47%, but

this is mainly related to the high deviation between the measured irradiance data

and the satellite irradiance data (OSI-SAF). This is not relevant for the model in this

work since test reference year data is considered for the irradiance. Additionally,

the performance model should only sufficiently predict the overall shape and yield

of the photovoltaic feed-in but does not have to perfectly match historical data.

3.3.5 Solar thermal performance

The second solar-based energy generation unit is solar thermal. The calculation

of the plane of array irradiance G
poa
t is the same as for the photovoltaic. Its per-

formance, described by the area-specific heat generation qstt , is represented by the

following polynomial function [Lindberg et al., 2016a; Rager, 2015]

qstt = c0G
poa
t − c1

(

T col
t − T amb

t

)

− c2

(

T col
t − T amb

t

)2
(3.22)

where c0, c1 and c2 are collector specific performance constants and T col
t the col-

lector temperature. The coefficients are here considered for collector number 1734

of the collector database of the SPF Institut für Solartechnik [SPF, 2017].

This work also optimistically assumes the collector temperature with 30 °C, equiv-

alent to Lindberg et al. [2016a].
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3.3.6 Superstructure of the building model

In this section, the overall technological superstructure is defined for a single build-

ing in the following section and illustrated in Figure 3.13.

Figure 3.13: Illustration of the considered superstructure of the supply system and

all potential refurbishment options for a single building.

The flexible energy imports from the electricity grid, the gas grid, and the pellet and

oil supply are modeled as Sources without a limited import profile. The chemical en-

ergy carriers can be combusted in different Transformers, such as the pellet boiler,

oil boiler and gas boiler with one-dimensional efficiencies. The gas can be further

converted in a fuel cell or an internal combustion engine. The two co-generation

units generate heat and electricity and are also modeled as Transformers. The

electricity can be converted to heat with a simple electric heater as Transformer,

or a heat pump described by the model in Section 3.3.3. Solar thermal and photo-

voltaic are Sources with time-dependent capacity factors, which are introduced in

Section 3.3.4 and Section 3.3.5. Their installed capacity is limited by the roof area

of the building. Electricity can be stored in a battery and heat can be stored in a
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hot water tank, both modeled as Storages. The demands are modeled as Sinks.

The hot water and electricity demand have fixed profiles, generated with the model

introduced in Section 3.1. The heat demand is bound by the model introduced in

Section 3.2.

The efficiency measures in the building itself can be the extension of the insulation

of the outside walls, the roof, or the basement ceiling. Further, the windows can be

replaced or a ventilation system with a heat recovery can be integrated. Moreover,

the rooms can be equipped with an occupancy controller influencing the comfort

temperature depending on the occupancy activity.

The detailed parametrization of the technologies and refurbishment measures de-

pend on the scenario considered and are introduced in Chapter 5.

In conjunction with this work, 100% self-sufficient buildings [Kotzur et al., 2017;

Röben, 2017] including technologies such as a reversible Solid Oxide Cell [Nguyen

et al., 2013; Frank et al., 2018] and Liquid Organic Hydrogen Carrier [Eypasch

et al., 2017; Teichmann et al., 2012] have also been evaluated. Although they were

discarded for the case of the final thesis, it shows the flexibility and validity of the

framework to easily include further technologies.

3.4 Time series aggregation and disaggregation

As discussed in Section 2.3, the considered optimization problems are challenging

to solve because of the high temporal resolution and the range of design and oper-

ation options for the building energy supply. Clustering based time series aggrega-

tion is a promising approach to deal with this complexity. Therefore, two publications

were created in conjunction with this thesis [Kotzur et al., 2018a,b]. The idea is to

neglect redundant time series data and to reduce it to the relevant patterns. Such,

the overall size of the optimization problem can be reduced.

3.4.1 Related work to time series aggregation

The first publication [Kotzur et al., 2018a] analyzes different algorithms and meth-

ods to reduce the data without losing the extreme periods relevant to the system

design. The such aggregated time series are used for the design of three refer-

ence systems. The aggregation methods are open-source published at https:

//github.com/FZJ-IEK3-VSA/tsam.
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The systems are first optimized in terms of design and operation with a full annual

time series. The resulting designs and costs define the benchmark. Then, for all the

considered systems different numbers of typical days are aggregated with different

aggregation methods. These aggregated days are then also used to optimize the

design of the systems.

For systems majorly relying on energy imports, it is shown that 12 typical days are

sufficient to find system designs whose costs deviate less than 2% to the bench-

mark systems’ costs. The smallest deviations are achieved with typical days aggre-

gated by a k-medoids clustering algorithm.

For a system mainly relying on fluctuating renewable energies and seasonal stor-

age, no sufficient number of typical days or even typical weeks is found to reach

a good system design. This is related to the description of independent typical

periods, which are not able to exchange energy in between.

Therefore, the second publication [Kotzur et al., 2018b] introduces a novel state

formulation that is able to account for storage inventories between aggregated typ-

ical days. Such, it is possible to also model seasonal storage with aggregated time

series. With this new formulation also for the renewable based system a design

could be found with 12 typical days, which is similar to the design of the benchmark

system.

3.4.2 Model reformulation

Accordingly, the model in this work also considers time series aggregation with the

new storage formulation. The aggregation is performed with a hierarchical clus-

tering. The resulting clusters are represented by their medoids while the day with

the minimum temperature and the day with the maximal peak load are extrinsically

added as potential cluster medoids.

A few adaptions have to be made to the model introduced in Section 3.3 in order

to integrate typical periods. First, all time steps previously described with a single

index t get replaced by a two-dimensional index consisting of the time step inside

a typical period g and the typical period index k. Additionally, the objective function

and the storage equations have to be rewritten.
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Adaption of the objective function

The objective functions get an additional parameter that weights the occurrence of

a typical period inside the observation frame. This occurrence is represented by

the scale of the related cluster |Ck| and is integrated into the cost function from

Equation 3.5 as follows:

min
∑

d

[cexist,dδd + cspec,dDd] +
∑

(i,j)∈L

∑

k∈K

|Ck|
∑

g∈G

cvar,i,j,g,kĖi,j,g,k△t (3.23)

Equivalently, the GHG emission function from Equation 3.6 is adapted:

min
∑

(i,j)∈L

∑

k∈K

|Ck|
∑

g∈G

γi,j,g,kĖi,j,g,k△t (3.24)

Adaption of the storage equations

The other equation set that has to be modified are the storage equations in order

to respect inter-period states and inter-period energy exchange. For the advanced

derivation, it is referred to Kotzur et al. [2018b]. Here, just the resulting equation set

is presented, which replaces the equations introduced in 3.11 and 3.12.

The intra-period states of charge SOCintra
s,k,g are equivalent to Equation 3.11 defined

as follows:

SOCintra
s,k,g+1 = SOCintra

s,k,g (1− η
self
s ∆t)

+∆t

[

ηchars Ėchar
s,k,g −

Ėdis
s,k,g

ηdiss

]

∀ g, k

SOCintra
s,k,1 = 0 ∀ k

(3.25)

The inter period states SOCinter
s,i are formulated for all original periods i while k =

f(i) is a look up table that relates every original period i to its representing typical

period k:

SOCinter
s,i+1 = SOCinter

s,i (1− η
self
s ∆t)Ng + SOCintra

s,k=f(i),Ng+1

SOCinter
s,Ni+1 = SOCinter

s,1

∀ i (3.26)

The superposition of the two states SOCinter
s,i + SOCintra

s,k=f(i),g describes then the

overall state of charge of the storage.
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In order to reduce the equation set given by the limitations of the state of charge in

Equation 3.12, two auxiliary variables are introduced: SOCintra
s,k,max is the maximum

state of charge within the typical period k and SOCintra
s,k,min is the minimal state of

charge. They restrict the intra-period state of charge as follows:

SOCintra
s,k,g ≤ SOCintra

s,k,max ∀ g, k

SOCintra
s,k,g ≥ SOCintra

s,k,min ∀ g, k
(3.27)

The state of charge for the entire sequence of typical periods is then further limited

to the maximal and minimal state of charge:

SOCinter
s,i + SOCintra

s,k=f(i),max
≤ Ds ∀ i

SOCinter
s,i (1− η

self
s ∆t)Ng + SOCintra

s,k,min ≥ 0 ∀ i
(3.28)

This reformulation allows the optimization of the enercore model together with time

series aggregation.

3.4.3 Time series disaggregation

Although time series aggregation is promising, it still has a drawback: If a system

design is derived based on the reduced time series data, no guarantee can be

given that the resulting system design is also feasible and optimal for the full time

series.

Therefore, either new aggregation methods are required, or validation optimizations

with the full time series have to be performed, as done by Bahl et al. [2017]. They

introduce a method which iteratively determines structure and design with aggre-

gated time series data and validates it for feasibility with an operation optimization

for the full time series.

Since this work describes all technologies by an existing related binary variable δd
and a scale related continuous variable Dd, an even more simple approach can be

chosen:

1. A structure and design optimization based on 12 aggregated typical periods

is performed. This constitutes the problem class of a MILP.

2. Based on the results, all technology choices described by the binary variables

δd are fixed by defining the binary variables as constants. This also counts for

the refurbishment decisions.
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3. An optimization with the full time series is performed while the operation and

the technology scaling Dd are optimized. Since they are just described by

continuous variables, a simple LP results.

The overall procedure is shown in Figure 3.14. The first advantage of the approach

is that with a small computational load a feasible design of the energy system can

be achieved. Second, a more accurate temporally disaggregated representation of

the system operation results, constituting also a more accurate grid load.

Figure 3.14: Two-level workflow of the building optimization, running once a model

with an aggregated time series and afterwards with the full time series data. Time

series data * are in this context the electricity load, internal heat gains, occupancy

activity, photovoltaic feed-in, solar thermal feed-in, solar heat gains and the ambient

temperature.

3.5 Discussion

The following section discusses the limitations and strengths of the single building

optimization. Although the aggregated electricity profiles from Section 3.1 align with

the validation data for Germany, the specific energy demands of single appliances

deviate from the German data. In consequence, the analysis of the load change

due to the integration of more efficient appliances would not be possible with a

sufficient accuracy. Therefore, this work conservatively assumes that the future

appliance load stays the same as today. As a future outlook, German time-usage-

survey and statistics about the appliance equipment in German households could

be included together with predictions of higher electrical appliance efficiencies.

Further, the model is able to differentiate between different household size and
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their different demands for electricity and hot water. It is able to respect the variety

of households with different cumulative electricity demands due to their different

appliance equipment. The pieces of appliance equipment are randomly chosen

and meet the aggregated distributions. Nevertheless, those differences are not

altered by the socioeconomic background of the households, although this is the

significant descriptor to determine the demand variation [Druckman and Jackson,

2008; Elnakat et al., 2016]. Still, the required data to model this effect is not publicly

available. Thus, it is excluded in the model.

The techno-economic descriptions of the cost and operation of the technologies

are simplified. The operation of the supply system is based on continuous vari-

ables and linear equations. In consequence, no part-load behavior or limitations,

e.g. of the fuel cells, are considered. Nevertheless, its integration would introduce

binary variables for every considered time step, which would magnify the overall

computational load. Equivalently, the cost functions of the supply technologies are

simply modeled with an existing related binary variable and a single continuous

variable. Although this is an improvement to a sole continuous formulation, the cost

function still has to be fitted to a certain technology scale. In consequence, the

estimated cost will deviate outside the fitted range, which could lead to wrong in-

vestment decisions. This could have an impact since many different building scales

are considered with varying scales of required supply systems. A solution would be

a piecewise linear formulation of the cost function, as done by Milan et al. [2015];

Gabrielli et al. [2017]. Nevertheless, this would as well result in a more complex

and computationally more challenging optimization problem.

A key strength is that the model can be automatically applied to all buildings given

by the EPISCOPE database, including refurbished and non-refurbished building

types for different construction years and sizes across Europe, although this work

focuses on the German building stock. It is able to represent the high load vari-

ance of single households, as well as their smoothing for larger aggregations of

households. Together, this allows for the later bottom-up modeling of a diverse

building stock with a precise prediction of the energy demands and their temporal

fluctuation.

In general, the model has a holistic perspective of residential buildings and is able

to consider synergies between different solutions, e.g. demand-side measures are

simultaneously considered with supply-side measures, or the operation of the heat-

ing system is optimized together with the operation of the electricity system. The

latter has especially a high relevance for the case that Power-to-Heat technologies

are considered, such as heat pumps or electric heaters. They can be flexibly oper-

ated, e.g. to maximize the self-consumption of photovoltaic electricity.

Further, a stochastic occupancy model temporally defining the demand for electric
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device usage and thermal comfort is combined with a deterministic optimization of

the whole supply and heating system. This enables the assessment of the maximal

flexibility given by the building stock, without limiting the comfort level of residential

occupants. The heat model especially has a high accuracy since it is able to dy-

namically consider the supply temperature and the thermal storage capacity of the

building. On the other hand, current standards and the majority of models only rely

on inelastic energy demands, calculated with a constant comfort temperature level.

Lastly, the model incorporates a complex set of decision variables, making it almost

impossible to solve for a time resolution of 8760 hours. Nevertheless, the effi-

cient integration of time series aggregation guarantees a high computational per-

formance, which is required for applying it to the diversity of a whole building stock.

In this context, two novel methods were introduced: A storage formulation based

on a superposition of system states that allows the modeling of seasonal storage

with time series aggregation, and a two-level optimization scheme that guarantees

a feasible system design also for the full time series.

In summary, the model is novel in terms of its accuracy and holistic view of single

building optimizations with the presumption of having a lean computational load.

This is required because it will be applied to a regionally resolved building stock

consisting of many different building types for different future scenarios.

3.6 Summary

This chapter proposed a design and operation optimization model for single resi-

dential buildings, implemented as a Mixed-Integer Linear Program. The objective

of the optimization is to minimize the GHG emissions and the annual energy cost

of a single building.

First, an occupancy simulation was introduced in order to determine the demand for

electricity and thermal comfort in a building in Section 3.1. The resulting profiles are

able to sufficiently incorporate the high variance of single residential load profiles,

as well as respect the stochastic smoothing for the case that an agglomeration of

households is considered.

Section 3.2 extends a thermal model for predicting the space heating demand of

the building. The thermal model itself is part of the supply system optimization. It is

able to account for the thermal building mass for a flexible supply system operation.

Further, potential refurbishment measures are part of the solution space, such as

the addition of wall or roof insulation, the replacement of windows, or the integra-
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tion of smart thermostats. Additionally, a workflow was developed that can flexibly

parametrize the model by a building database to consider the different shapes and

envelope fabrics of different building types.

In Section 3.3, the supply system model was set up with a generic energy sys-

tem framework whose formulation is adapted to better integrate the heating supply

systems. The framework is object-oriented and standardizes the mathematical de-

scription of different technologies to different technology classes. While this leaves,

in general, open which supply technologies are considered, a superstructure of the

relevant residential supply technologies was defined for this work.

All in all, the combinatorial consideration of demand-side measures together with

supply-side measures states a complex mathematical program that is computation-

ally heavy. In order to keep the program tractable for many different building types

and scenarios, time series aggregation was introduced in Section 3.4 to reduce

the complexity of the model. Therefore, different clustering methods were com-

pared and the most suitable is chosen. Additionally, a novel description of storage

states is introduced which allows for an energy exchange between different typi-

cal periods. Lastly, a novel two-level optimization approach was introduced which

significantly reduces the accuracy losses due to the time series aggregation.

The discussion in Section 3.5 concluded that the single building model has a holistic

perspective of energetic measures in residential buildings. Nevertheless, its degree

of detail is adapted to the requirement of having a lean computational load and the

data available.
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Chapter 4

Aggregation of an archetype

building stock

The following chapter introduces a novel algorithm to aggregate a spatially resolved

representative building stock which is used to scale the results of single building op-

timizations to a nationwide perspective. Therefore, the first Section 4.1 introduces

existing approaches to model a building stock for energy performance analysis.

Section 4.2 discusses the relevant attributes to describe the energy performance

of a building. Afterwards, a novel aggregation algorithm is introduced in Section

4.3 which determines building archetypes to represent the distribution of building

types on the municipality level. Section 4.4 illustrates and validates the algorithm

for the case of Germany. The chapter closes with a discussion in Section 4.5 and

a summary in Section 4.6.

4.1 Existing definitions of building archetypes

The representation of a building stock by a set of archetype buildings is widespread

in the realm of modeling strategies for carbon dioxide emission reductions, as dis-

cussed in Section 2.1. Existing archetype building databases and approaches to

create such databases are introduced in the following section.

In 2010, the European Union introduced the Energy Performance of Buildings Di-

rective [EU, 2012]. It prescribes the analysis of the cost optimality of the national

regulations for a minimum efficiency standard in the building stock at this time. The

analysis should be performed based on a set of representative reference buildings.
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In this context, [Corgnati et al., 2013] introduced different pathways to determine

representative reference buildings for the analysis of cost optimal refurbishment

measures:

1. Example reference buildings based on expert assumptions and studies.

Those are manually defined to represent a group of buildings in case no sta-

tistical data are available and the parameters are based on the creator’s best

knowledge.

2. Real reference buildings that are the most common buildings of a certain

category of buildings. Those have high accuracy, but their aggregation is

data-intensive since a large data set of existing buildings is required that can

be clustered to certain building classes.

3. Theoretical reference buildings that represent statistical data of a certain

building stock by a composite of attributes, but do not have to exist as such in

reality.

Although the pathways would be independently imaginable, Corgnati et al. [2013]

concluded that in reality most often a mixture of the pathways is chosen due to

different data available.

The most popular archetype database for the German residential building stock is

provided by the Institute für Wohnen und Umwelt and has been under steady de-

velopment since 1990 [IWU, 2005, 2010]. It is derived from real example buildings

as well as statistical data about the nationwide building stock itself. It categorizes

the stock into classes differing by construction year and scale. Each class is rep-

resented by a typical building, which is described with technical values such as the

U-values of the wall and roof, or the area and orientation of windows. It is mainly

used for static calculations and analysis of the energy saving potentials by chang-

ing or adding the insulation in different building classes. The data and method are

available open-source, constituting the high popularity of the database. Further, this

stock description has been extended to other European countries in the framework

of the EPISCOPE project [EPISCOPE, 2016].

The Department of Energy (DOE) also introduced a set of archetype buildings for

the residential sector [Hendron and Engebrecht, 2010] and the service sector [Tor-

cellini et al., 2008] in the USA, referred to as benchmark or prototype buildings.

These building definitions are under steady development by different national labs

and are used for energy performance analysis as well. An advantage to the Ger-

man IWU database is that additional time series data is provided for the different

building types, e.g. including electricity, hot water, cooling or heating demand for
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typical days in different climate zones. Therefore, these profiles and data can eas-

ily be used for dynamic models of energy supply systems, incorporating electricity

supply and storage technologies.

Mata et al. [2014] proposed an analytical methodology to aggregate archetype

building stocks for France, Germany, Spain, and the UK, based on publicly available

data. The steps include:

1. a segmentation based on different categories, such as construction year or

type,

2. a technical characterization, e.g. the thermal transmittance as input values

for energy performance models,

3. and a quantification to scale them up to a nationwide level.

The data considered for Germany mainly relies on the introduced IWU database.

The aggregated archetype buildings are then used to parameterize an energy per-

formance model to predict the space heating, hot water and electricity demands on

a nationwide level. Such calculated final energy demand shows a deviation from

-4% to + 2% to the statistic values of the residential final energy demand in the

countries.

The aggregation to archetype buildings is also widespread in the context of urban

energy models: Cerezo et al. [2015] and Sokol et al. [2017] introduced methods to

estimate unknown attributes of the proposed archetype buildings, such as comfort

temperature levels, based on a probability distribution. The approach can make

use of measured energy data in different buildings, e.g. annual or monthly gas

demand, and fits the uncertain attributes to it. Although the resulting model has

high accuracy, it is computationally intensive since many different simulations are

performed and a highly resolved measured energy demand data set is required,

which is not available for the whole of Germany.

Further, Fazlollahi et al. [2014] and Fonseca and Schlueter [2015] use k-means

clustering methods to group similar buildings to urban areas. The location of the

buildings and spatially resolved statistical attributes describe them. The clustered

buildings are then accumulated to different zones in the analyzed district. The

advantage of the clustering is that the simulation models or optimization models

can be applied to the zones instead of the single buildings, reducing the number of

variables and computational load of the related models.

Sandberg et al. [2016] introduces a stock model with the focus to dynamically pre-

dict construction, demolition and renovation rates in different European Countries.
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It does not rely on single archetype buildings; instead, it describes top-down the

whole building stock by statistical values, also related to attributes such as popula-

tion development. Although it provides useful data for prediction of age structures in

the building stock, the approach alone is not suitable for the modeling of the energy

performance.

In summary, many different approaches for the aggregation and segmentation of

archetype buildings have already been introduced. Nevertheless, none of the stud-

ies aggregate a nationwide archetype building stock that is spatially resolved and

can be used to predict detailed temporally and spatially resolved energy perfor-

mance analysis. Further, it can be concluded that the quality of the descriptions of

the archetype buildings is highly dependent on the availability of data, making the

generalization of the approaches challenging.

4.2 Relevant building attributes

In order to determine the required data for a sufficient building aggregation for Ger-

many, this section discusses the relevant attributes for describing the energy per-

formance of a building. It starts with a general description of attribute categories in

Section 4.2.1 and introduces the data sets that are available for Germany in Section

4.2.2.

4.2.1 General attribute categories

As starting point, the relevant attributes to perform an energy analysis need to be

introduced to describe the archetype buildings.

Depending on the focus of the analysis, different categorizations of the attributes

are imaginable. Table 4.1 exposes the categories found in the literature and the

nomenclature considered in this thesis.

In general, four categories are emphasized in the literature: The Form describes

the physical exterior shape of the building, including orientation, wall, and roof ar-

eas. The Envelope characterizes the physical properties of materials used in the

building. The technologies installed in the buildings to satisfy thermal comfort and

other demands are grouped in the category System. The Operation summarizes

all extrinsic conditions determining the system operation such as weather or occu-

pancy behavior.
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Table 4.1: Attribute categorization for energy performance models.

DOE [Tor-

cellini et al.,

2008]

Corgnati

et al. [2013]

Mata et al.

[2014]

This work Examples

Form Form Building

type

Form Area, number of

floors, orientation

Fabric Envelope Construction

year

Envelope U-values, window

transparency,

thermal capacity

Equipment System Heating

system

System Heat technology,

efficiencies, pho-

tovoltaic capacity

Program Operation Climate

zone

Operation Location, comfort

level, occupancy

- - - Adoption Ownership, inter-

est rate

Further, this work also models the cost optimal technology adoption of the different

buildings, in addition to the energy performance of the status quo. Therefore, the

category Adoption summarizes all attributes referring to the investment capabilities

of the building owner.

4.2.2 Considered attributes for the aggregation

The categories discussed define a general framework to segment buildings, but the

required attributes depend on the model and the data availability. E.g., the envelope

could be described by materials with exact heat conductivities and thicknesses, just

heat transfer coefficients, or by the construction year of the building from which

these values are derived.

The attributes considered for the aggregation procedure of this thesis are oriented

towards the introduced model in Chapter 3 and the data especially provided by

the Census [Bundesamt, 2011]. Figure 4.1 shows the aggregated Census data for

Germany. It is dominated by above 12.3 million single-family houses and 6.3 multi-

family houses, while buildings with more than 12 apartments have with 0.21 million

a small share at the total building number. The majority of the SFH are detached,

constituting an overall small proportion of terraced and semi-detached buildings.
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Figure 4.1: Attribute distribution of the German building stock based on the Census

[Bundesamt, 2011].

The relative amount of buildings for construction years after 1995 seems relative

low but it is explained by the shorter observation intervals. Therefore, an almost

uniform distribution of constructions per year is recognizable for the period after

1949. Nevertheless, this is differing for the various building sizes but not identifiable

on an aggregated level. 23.2 million of the 40.5 million apartments are rented, while

one- and two-person households dominate with together 27.1 million households.

Those also constitute the peak of apartment sizes at compact living areas 59 to

79 m2 per household, while the bigger single-family houses spread over a higher

bandwidth.

All these distributions are also available on an absolute scale for the municipalities

in Germany and state the data basis for the considered archetype aggregation, as

shown in Figure 4.2. Nevertheless, some additional values are required. Therefore,

the following section introduces their derivation and the specific consideration of the

Census data.

Form attributes

The building orientation is expressed by the azimuth angle and is relevant for the

solar irradiance on roof and walls. Although it could be considered continuously, it
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Figure 4.2: Structure of the considered attributes relevant for the building energy

supply.

is categorically modeled to reduce the number of variants. New approaches use

satellite image recognition [Mainzer et al., 2017] to determine the roof shapes, even

including shadowing effects such as Google Sunroof, which is provided by EON

[EON, 2018]. Nevertheless, no available data sets about the roof orientation were

found on a German-wide municipality level. Therefore, a uniform distribution is

assumed for all municipalities, similar to the approach of Mainzer et al. [2014].

The living area per flat and the number of flats per building determine the size and

type of the building. The data is directly provided by the Census on the municipality

level [Bundesamt, 2011]. The exact building shapes are then derived from the IWU-

type buildings, as introduced in Section 3.2.2.

Envelope attributes

The construction year or age of a building is also provided for different intervals on

the municipality level [Bundesamt, 2011]. Nevertheless, the intervals do not align

with the intervals of the IWU data [IWU, 2010], wherefore they are adapted. A uni-

form distribution of constructions per year is assumed for every provided interval

of construction years. The constructions per year are then superimposed and ad-

justed to the intervals of the IWU data. The constructions’ years characterize the

physical properties of the building envelope, given by the IWU database.
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Figure 4.3: Relative share of terraced buildings in the different municipalities in

Germany [Bundesamt, 2011], an example of the spatial distribution of the different

considered building attributes.

The surrounding of the buildings is provided by the segments detached, semi-

detached, terraced and other from the Census data [Bundesamt, 2011]. Since a

sufficient energetic evaluation can just be performed with the first three categories,

the segment other is assumed to be semi-detached as well. This constitutes the

smallest error in case the buildings related given in the category other are detached

or terraced, since semi-detached states the mean category. Further, the distribu-

tions of the three categories fit with the adaption to the distributions of the highly

spatially resolved GIS analysis performed by Hartmann et al. [2016]. The spatial

distribution, e.g. of the share of terraced buildings, is illustrated in Figure 4.3, high-

lighting their main appearance in urban areas.

Since the building stock shall be extrapolated into the future, new constructions are

additionally integrated by rebuilding existing buildings. The data is derived from

the Regionaldatenbank, which has provided statistics about new constructions in

the different municipalities since 2008 [GENESIS, 2018]. Based on those, a munic-

ipality specific mean construction rate is derived for the years 2008 till 2015, which

is then extrapolated until the year 2050. The amount of newly constructed build-
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ings is limited by the number of buildings that are already constructed until the year

1987. Their integration will be further discussed and visualized in Section 4.5.1.

Operation attributes

The location of the buildings is determined by fitting their appearance to the cen-

troid of the municipalities. The location is continuously modeled and described by

the longitude and latitude. The resulting location determines the climate conditions

and weather time series for the energy performance modeling of the archetype

building. The results are later uniformly distributed over the municipalities.

The number of occupants per flat determines the occupancy behavior with their

related demand for thermal comfort, hot water and their usage of electrical appli-

ances in the building. It is directly extracted from the Census data set [Bundesamt,

2011]. The distribution of vacant apartments is added as attribute expression with

zero occupants.

System attributes

The existing heat supply technology is derived from a combination of the Census

data [Bundesamt, 2011] and a study that provides data about the heat supply on

the federal state level [BDEW, 2015]. The spatially resolved data basis is given by

the Census data, which differentiates between district heating, CHP supply, central

heating, single-story heating and apartment heating units. While district heating

and CHP supply can be directly used in the model, the other categories need to be

further subdivided by the category specific heating technology distribution given by

BDEW [2015] to gas boilers, oil boilers, pellet boilers and heat pumps.

Existing photovoltaic installations are derived from the EEG-Anlagenregister [En-

ergymap, 2015], which is a collection of renewable energy plants that are regulated

by the EEG and registered until 2015. The above 1.5 million data entries are filtered

for rooftop photovoltaics below 250 kW, which are then assigned to the different mu-

nicipalities. No spatially resolved data for solar thermal collector installations were

found.
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Adoption attribute

To capture different investment behavior, the type of ownership of the building is

considered as well. It is differentiated between buildings where the occupants are

also the owner of the building and buildings which are rented. The required data is

provided for the apartments by the Census Bundesamt [2011].

4.3 Aggregation algorithm

The previously introduced spatially resolved attribute distributions need to be ag-

gregated to a limited set of archetype buildings to evaluate them energetically.

Thereby, two challenges arise: First, the buildings are described by a mixture of

categorical and continuous attributes. Approaches exist to deal with this type of

aggregation class, such as the mixture of k-means and k-modes clustering, referred

to as k-prototypes [Huang, 1998]. Nevertheless, they would rely on a data set

consisting of real buildings which should be clustered and can then be represented,

e.g. by its medoid. This does not apply to the case of the previously introduced data

sets since only statistics of building attributes are provided and no real instances of

buildings. Therefore, a new aggregation methodology is required.

The related mathematical problem formulation of representing the data by a lim-

ited set of archetype buildings is introduced in Section 4.3.1. The applied solving

algorithm is then derived in Section 4.3.2.

4.3.1 Mathematical problem formulation

Each categorical attribute p ∈ P has a set of discrete expressions m ∈ M(p). E.g.,
the attribute heating system has the expressions oil boiler or gas boiler. Every node

n ∈ N , in our case the municipalities, has a distribution dn,m,p of these attributes’

expressions, e.g. the number of oil boilers in a municipality. Further, every node

has a set of continuous attributes c ∈ C on a cardinal scale with the value yn,c, in

our case the longitude and latitude of every municipality.

These attributes shall be represented by a limited set of archetype buildings b ∈ B.

These archetype buildings occur βb,n times in every node n, represented by the

whole variable set βββ. This occurrence can be defined either as an integer variable

or as a continuous variable for a relaxed approach. The categorical expressions
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that describe the buildings are defined by the binary variable δb,p,m, which is one if

the building-attribute p expresses as m and zero otherwise. They belong to the set

δδδ. The continuous expressions of the buildings are described as µc,b, belonging to

the variable set µµµ.

Additionally, weighting factors wp and wc are considered to weight the categori-

cal and cardinal attributes according to their relevance for the energy performance

analysis.

In order to fit the archetype buildings to the data, a prediction error is defined,

describing the deviation between the statistical data and the archetype buildings

representing such. For the case of the continuous attributes, it is expressed as

follows:

ec =
∑

n∈N

∑

c∈C

wc

∣

∣

∣

∣

∣

dn,c −
∑

b∈B

βb,nϕc (yc,n, µc,b)

∣

∣

∣

∣

∣

(4.1)

dn,c is thereby the given number of buildings in every node n for every continuous

attribute c, e.g. the absolute number of buildings in a municipality given by the

Census. yc,n is the expression of the continuous attribute in the node, e.g. the

longitude of the centroid of a municipality. This number has to be represented by

the archetype building types βb,n located at the node. The distance between the

continuous attribute expression of the archetype building µc,b and the expression in

the node yc,n is evaluated by the fit function ϕc, which is one in case of identical

attributes and zero if they have the maximal distance. The overall absolute error

would converge to zero, if all buildings belonging to the municipality βb,n would

have a perfect fit ϕc (yc,n, µc,b) of one. The distance metric of the expressions is

described by the following distance function:

ϕc (yc,n, µc,b) = 1−

[

yc,n − µc,b

maxn∈N yc,n −minn∈N yc,n

]2

(4.2)

The error equation 4.1 together with the distance function 4.2 alone would state a

special form of k-means clustering [Jain, 2010].

Nevertheless, the overall error is also determined by the fit of the categorical at-

tribute distributions with the following equivalent error function:

ep =
∑

n∈N

∑

p∈P

wp

∑

m∈M(p)

∣

∣

∣

∣

∣

dn,m,p −
∑

b∈B

βb,nδb,p,m

∣

∣

∣

∣

∣

(4.3)

The categorical fit function is in this case simply expressed by a binary variable

δb,p,m, which is one if the archetype building has the categorical expression m and

is zero otherwise. The goal is to fit the number of buildings dn,m,p in the node n with

the categorical expression m.
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Additionally, a constraint is required that defines that every archetype building can

only have a single categorical expression of the related attribute p:

∑

m∈M(p)

δb,p,m = 1 ∀ b ∈ B, p ∈ P (4.4)

E.g., the building can only be detached, semi-detached, or terraced, but not multiple

categories simultaneously.

Lastly, a hard constraint is introduced that the number of buildings in every node bn
has to be represented by an equivalent number of archetype buildings:

bn =
∑

b∈B

βb,n ∀ n ∈ N (4.5)

Overall, the cumulative error expressions 4.1 and 4.3 shall be minimized while hold-

ing the constraints 4.4 and 4.5. This defines the following mathematical problem

P (β, δ, µβ, δ, µβ, δ, µ) to determine the best representative set of archetype buildings:

min
β,δ,µ

∑

n∈N

∑

c∈C

wc

∣

∣

∣

∣

∣

dn,c −
∑

b∈B

βb,nϕc (yc,n, µc,b)

∣

∣

∣

∣

∣

+
∑

p∈P

wp

∑

m∈M(p)

∣

∣

∣

∣

∣

dn,m,p −
∑

b∈B

βb,nδb,p,m

∣

∣

∣

∣

∣

s. t.
∑

m∈M(p)

δb,p,m = 1 ∀ b ∈ B, p ∈ P,

bn =
∑

b∈B

βb,n ∀ n ∈ N,

β ∈ Z
≥0, µ ∈ R, δ ∈ {0, 1} ,

(4.6)

It is nonlinear, combines binary with continuous variables, and has non-derivable

elements, such as the absolute evaluation of the error term. All in all, it determines

a Mixed-Integer Nonlinear Program (MINLP) that is challenging to solve for a global

optimal solution for a large set of nodes and attributes.

4.3.2 Solving algorithm

Since a direct determination of the global optimal solution is almost impossible, an

alternative approach is required to find optimal sets of archetype buildings: First,

the absolute expressions in the objective function in Equation 4.6 are simplified to

a quadratic measure to get a derivable objective term. Second, a novel greedy
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algorithm is introduced with the goal to determine a locally optimal solution. It is

inspired by the concept of an expectation-maximization algorithm, whereto Lloyd’s

k-means clustering algorithm [Lloyd, 1982; Jain, 2010] and the k-prototypes algo-

rithm [Huang, 1998] belong as well.

Figure 4.4: Structure of the developed algorithm to determine a spatially distributed

archetype building stock.

The idea is to describe the assignment of the archetype buildings to the different

nodes βb,n as the expectation step, with the objective to get in every municipality a

representation of the attribute distributions by the most likely archetype buildings.

Nevertheless, the attributes of the archetype buildings themselves are unknown

wherefore their estimation µc,b, δb,p,m is defined as the maximization step, illustrated

in Figure 4.4. It results in two sub-problems that can be iteratively solved.

Therefore, the problem is restructured as follows:

1. Problem as expectation step: Fix the attributes of the archetype buildings as

µµµ = µ̂̂µ̂µ and δδδ = δ̂̂δ̂δ and solve P1 = P (β, δ̂, µ̂β, δ̂, µ̂β, δ̂, µ̂) to determine the building assignment β.

The problem is described as follows:

min
β

∑

n∈N

∑

c∈C

wc

[

dn,c −
∑

b∈B

βb,nϕc (yc,n, µ̂c,b)

]2

+
∑

p∈P

wp

∑

m∈M(p)

[

dn,m,p −
∑

b∈B

βb,nδ̂b,p,m

]2

s. t. bn =
∑

b∈B

βb,n ∀ n ∈ N,

β ∈ Z
≥0

(4.7)

This states a Quadratic Integer Program (QIP). A relaxed version with many differ-

ent buildings per node could be formulated with continuous variables for the num-
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ber of buildings β ∈ R≥0 and would result in a Quadratic Program (QP) that can be

solved with low computation load.

2. Problem as maximization step: Fix the assignment of the archetype buildings

βββ = β̂̂β̂β and solve P2 = P (β̂, δ, µβ̂, δ, µβ̂, δ, µ) to determine the new archetype building attributes

δδδ and µc,b. The mathematical problem is stated as follows:

min
δ,µ

∑

n∈N

∑

c∈C

wc

(

dn,c −
∑

b∈B

β̂b,nϕc (yc,n, µc,b)

)2

+
∑

p∈P

wp

∑

m∈M(p)

(

dn,m,p −
∑

b∈B

β̂b,nδb,p,m

)2

s. t.
∑

m∈M(p)

δb,p,m = 1 ∀ b ∈ B, p ∈ P,

µ ∈ R, δ ∈ {0, 1} ,

(4.8)

This would state a large-scale Mixed-Integer Quadratic Program (MIQP). Neverthe-

less, its structure allows it to be decomposed into different sub-problems for each

continuous attribute c and categorical attribute p. Their cumulative optimal solution

states also the overall optimal solution.

For the categorical attributes δδδ the following sub-QIPs are stated and deterministi-

cally solved:

min
δ

∑

n∈N

∑

m∈M(p)

(

dn,m,p −
∑

b∈B

β̂b,nδb,p,m

)2

s. t.
∑

m∈M(p)

δb,p,m = 1 ∀ b ∈ B,

δ ∈ {0, 1} ,

∀ p ∈ P (4.9)

The continuous attributes µµµ on the other hand can be directly calculated as follows:

µc,b =

∑

n∈N

∑

b∈B β̂b,nyc,n
∑

n∈N

∑

b∈B β̂b,n
∀ c ∈ C (4.10)

The step is equivalent to the maximization step of the k-means algorithm [Huang,

1998].

The building assignment problem and the attribute adaption problem are iteratively

solved until a convergence criterion is met, which can be either a minimal change
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of the objective function value of the overall problem, or a maximal number of iter-

ations.

The overall algorithm is given as follows:

1. Choose an initial set of random building attributes δ̂̂δ̂δ0 and µ̂̂µ̂µ0, and solve P1 =
P (β, δ̂0, µ̂0β, δ̂0, µ̂0β, δ̂0, µ̂0) to obtain the building assignment β̂̂β̂β0. Set the iterator to t = 0.

2. Solve P t
2 = P (β̂t, δ, µβ̂t, δ, µβ̂t, δ, µ) to obtain the building attributes δ̂̂δ̂δt+1 and µ̂̂µ̂µt+1.

3. Solve P t
1 = P (β, δ̂t+1, µ̂t+1β, δ̂t+1, µ̂t+1β, δ̂t+1, µ̂t+1) to obtain the building assignment β̂̂β̂βt+1.

4. If a convergence criterion is met, e.g
∣

∣P t
1 − P t−1

1

∣

∣ ≤ ǫ or t = tmax, stop. Oth-

erwise set t = t+ 1 and go to 2.

In general, it is observed that the sequence of P t(β, δ, µ) is strictly decreasing to

a minimum value which will be shown in the next section at the example of the

considered attribute set for the German municipalities.

4.4 Validation aggregation algorithm

The following section applies the novel algorithm to the data set introduced in Sec-

tion 4.2.2.

The initial guess of the archetype building attributes, the start solutions for the al-

gorithm, are derived from the archetype buildings provided by the IWU database,

while missing parameters are randomly generated, e.g. the number of persons liv-

ing in an apartment. The iteration limit of the algorithm is set to four. The algorithm

is applied once to different predefined numbers of archetype buildings with a single

initial attribute guess. Additional information such as the weightings are found and

discussed in the Appendix B.2.

The resulting objective function evaluations, defined by the cumulative squared

error, are illustrated for the different iteration steps and an increasing number of

archetype buildings in Figure 4.5 for a uniform weighting of the attributes. The vi-

sualization of the error on the linear scale reveals a high gap between the solution

of the first iteration step and the second iteration step, reducing the error measure

by a factor of 5 to 20. This illustrates the high improvement of the first attribute

adaption of the building archetypes to fit the overall Census data. It is valuable

since the first archetype buildings are initialized by the IWU database that defined

the state-of-the-art representative archetype buildings in Germany.
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Figure 4.5: Objective function value as the squared error between the attributes

estimated with archetype buildings and the given distributions on the municipality

level, for different iteration steps and numbers of archetype buildings - top on an

absolute scale and bottom on a logarithmic scale.

The following iteration steps constitute smaller improvements that become marginal

from the third to the final iteration step. It embodies the statement that the algorithm

is converging to a minimum value. Although it is probably only a local minimum, it

states a high improvement to the initial guess of archetype buildings.

As expected, an increasing number of archetype buildings reduces the overall error

measure and allows a more accurate representation of the Census data. While no

improvement is observable between 50 and 800 archetype buildings on the linear

scale, the logarithmic scale reveals that with an increasing number of archetype

buildings the error gets reduced with an almost constant gradient. Therefore, an

exponential decay function would describe best the accuracy improvement with an

increasing number of archetype buildings, highlighting the convergence to an error

close to zero for a sufficient number of archetype buildings. For the considered

application case, it should at the latest converge to zero with 18 million archetype

buildings, representing the full set of existing residential buildings in Germany.
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Further, it is noticeable that for a high number of archetype buildings the initial

solution error stays on a given offset and does not decrease with an increasing

number of archetype buildings. It is mainly related to the choice of the initial set of

archetype buildings derived from the IWU database: It is just based on 55 archetype

buildings that are repetitively initialized for higher numbers of archetype buildings,

except for the randomly chosen attributes, such as longitude or latitude. Therefore,

an increasing number of initial guesses does not significantly increase the diversity

of attribute combinations. Although this leads to a limited accuracy gain for the

initial archetype guess for high numbers of archetype buildings, this drawback is

compensated with every attribute adaption step for higher iteration numbers.

Since the evaluation of the absolute value of the overall error measure is inconclu-

sive, the fitting of the different attributes for different numbers of archetype buildings

is further illustrated in Figure 4.6 for the final iteration step. It is defined as the cumu-

lative deviation of the representation of an attribute expression m for every region

in ratio to the total attribute manifestations for the whole of Germany:

f(p,m) =

∑

n∈N dn,m,p −
∣

∣dn,m,p −
∑

b∈B βb,nδb,p,m
∣

∣

∑

n∈N dn,m,p
∀ p,m (4.11)

The figure shows that for some of the attribute expressions, already a small number

of archetype buildings is able to represent them sufficiently, such as single-family

houses with a single apartment or energy supply with gas boilers. These are at-

tribute expressions that often occur in the original data set. Therefore, they are

represented first by the archetype buildings to reduce the overall error. Neverthe-

less, attributes such as a CHP, heat pump supply, or apartments with a living area

smaller than 39 m2 rarely occur in the Census set. Therefore, the algorithm has a

secondary priority to represent them and focuses instead on building attributes that

exist more often. E.g., no archetype building was created with a heat pump supply

for 5, 25 and 50 archetype buildings because the overall share of heat pump supply

in Germany is below 2 %. Thus, it would not be efficient to sacrifice an additional

archetype building.

For 800 archetype buildings, 50 of the 55 attribute expression fits lay above a value

of 90%. Only rarely occurring attributes, such as a construction year above 2009,

are still not well represented. Nevertheless, often occurring attribute expressions

(45 of 55) are already fitted above 80 % for 200 archetype buildings, such as the

different orientations, the building surroundings, or the number of persons.

The majority of attribute expressions get strictly better fitted with an increasing num-

ber of archetype buildings. Nevertheless, some attribute fits are first reduced and

then increased again wherefore two explanations are possible: First, the algorithm

converges only to a local optimum wherefore the different initial guesses could con-
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Figure 4.6: Relative fit of all categorical attribute expressions for different numbers

of archetype buildings in Germany.

stitute different local minima which are suboptimal on a global evaluation. Second,

a trade-off to the other attribute fits is made, and it could be more efficient to sac-

rifice the accuracy of one attribute to the accuracy of others. The second expla-

nation is more likely since it is supported by the visualization of the total quadratic

error, which is strictly decreasing with an increasing number of archetype buildings,

shown in Figure 4.5.

In general, this is to clarify that a fit below 100 % does not imply that the expres-

sion is highly under-represented on the aggregated level: While an overestimation
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of an attribute in one region and an underestimation in the other regions constitute

a reduced fit, they could add up and compensate for each other out on an aggre-

gated nationwide level, which is visualized in detail in Appendix B.2. The relative

fit for Germany is shown in Table 4.2. It is defined by the total number of attribute

expressions that are fitted in ratio to the total number of attribute expressions of the

input data. Already with a small number of 25 archetype buildings, 90.4 % of the

attribute diversity can be met on a nationwide scale. For 800 archetype buildings,

an aggregated fit of even 99.5 % is reached.

Table 4.2: Relative fitting of the German-wide attribute distributions for a varying

number of archetype buildings.

Archetype buildings 5 10 25 50 100 200 400 800

Aggregated fit [%] 54.3 81.4 90.4 93.9 96.2 98.2 98.9 99.5

The fitting of the continuous attributes, the latitude and longitude, is qualitatively

illustrated in Figure 4.7 with their exact placement in Germany. For the case of 5 to

25 archetype buildings, all buildings are primarily located in the center of Germany.

The reason is that building archetypes are mainly used to represent the diversity of

categorical attribute combinations that are spatially distributed over Germany. E.g.,

a single-family house from 1960 with a four-person family and gas boiler supply

manifests as an archetype building that represents this building type in Kiel as well

as in Munich. For higher numbers of archetype buildings from 100 to 800, the

geospatial location of the archetype buildings is spreading since similar categorical

building types can be instantiated multiple times. In the case of 800 archetype

buildings, it is even observable that in urban areas more archetype buildings are

located to represent such.

Additionally, obstacles exist where building archetypes are located outside Ger-

many. This happens because Germany has a non-convex shape: For the case that

an archetype building represents buildings in municipalities whose line connection

lays partially outside of Germany, the archetype building is also placed outside of

Germany.

Nevertheless, the placement of archetype buildings at the borders of Germany is

still avoided, which is typical for an aggregation algorithm and would appear as

well for a conventional clustering approach. It is further illustrated in Figure 4.8

that introduces the local assignment of example archetype buildings selected from

the set of 800 archetype buildings. The locations of the archetype buildings are

the centroids of the buildings they represent. Since these clusters are spatially

spread over different municipalities, the centroid is not placed at a municipality at
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Figure 4.7: Geographical location of different numbers of archetype buildings in

the final iteration step.

the border.

Further, it is recognizable that the areas and the amounts that are represented differ

between the different archetypes: While an archetype building supplied with heat

pumps must represent buildings over a large area, archetype single-family houses

supplied by gas boilers have a definite local assignment area. The reason is that

more archetype buildings with gas boilers are selected since also more buildings

with gas boilers exist in reality. Therefore, the algorithm chooses for them a higher

spatial separation to minimize the overall error, while accepting higher geospatial

errors for the buildings with heat pumps.
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Figure 4.8: Location of the most northern (blue) and most southern (green) single-

family house archetype with heat pump supply (left) and gas boiler supply (right) of

the set of 800 archetype buildings, and their assignment to the different municipali-

ties.

This illustrates the advantage of a numerical aggregation of archetype buildings

since it can reasonably balance the different aggregation errors on multiple dimen-

sions.

The explicit local assignment has the advantage of a high spatial resolution that

is especially relevant for the consideration of local weather conditions. Neverthe-

less, in consequence, some municipalities are dominated by the representation

of a few archetype buildings whose energy performance will dominate the energy

performance prediction of the building stock in the whole region. If one of these

archetype buildings is exceptional, e.g. regarding its stochastic occupancy behav-

ior, it can lead to high spatial obstacles of the aggregated energy performance

analysis. Therefore it could make sense for future works to trade-off the spatial

accuracy to a higher diversity of building archetypes that represent a single munic-

ipality.
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4.5 Discussion

The following section discusses the advantages and drawbacks of the such ag-

gregated building stock. Section 4.5.1 analyzes the quality of the introduced and

considered attributes as well as attributes that were consciously excluded. The

strength and limitations of the aggregation algorithm are discussed in Section 4.5.2.

4.5.1 Further building attributes

A prerequisite for this work is the availability of the Census data [Bundesamt, 2011]

in such a high spatial resolution. It allows a precise consideration of many building

attributes that are relevant for an energy performance analysis.

Nevertheless, some parameters are further relevant for energy performance but not

available on such a granular resolution. These attributes are heuristically derived

after the aggregation.

Wood fireplaces have an increasing role in the heat supply of the residential sector.

Nevertheless, no accurate data are available. The Verband Deutscher Ingenieure

(VDI) assumes 12 to 15 million fireplaces with an overall heat capacity of 150 to 200

GW. Logs or, in general, instead firewood are their main fuel with a share of 75 TWh

in 2014[VDI, 2015], approximately resulting in 430 full load hours per fireplace. It

is assumed that they mainly occur in larger apartments, wherefore every flat with

a living area bigger than 100 m2 is set with a fireplace, resulting in 14.4 million

fireplaces in total.

Also for the case of hot water supply no spatial data were found. Instead, the hot

water generation by electric boilers is derived with a binomial distribution of 16.4 %,

representing the share of end energy demand for electrically generated hot water

in Germany in 2014 [BMWi, 2016]. Otherwise, the hot water is supplied with the

same technology as the spatial heat.

The envelope is also dependent on the case that the building has already been

refurbished. No spatially resolved data were available for providing such informa-

tion. Nevertheless, a study done by IWU [IWU, 2018] provides data about the share

of already performed refurbishment measures for different building ages. For each

archetype building, a binary sample is chosen based on the probability that this

building class has already been refurbished.

Further, a refurbishment rate is required to extrapolate the envelope refurbish-
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ment activities to the future. While current energetic refurbishment rates lay around

1.1 % of the buildings per year [UBA, 2017b], the cosmetic refurbishment rates,

e.g. repainting of facades, plus the energetic refurbishment measures, exceed 2

% per year[IWU, 2010]. Further, the BMWi considers an increase of the energetic

refurbishment to above 2 % in the next decades for their Base scenario [BMWi,

2018]. While in this work the decision if an energetic refurbishment is intrinsically

performed given by the cost optimization model introduced in Section 3.2, the cost

for the energetic refurbishment measures are dependent on the case if the building

was in the refurbishment cycle. The rate of this cycle is also assumed to be the

2 % [IWU, 2010] annually of the whole building stock, which relates to the sum of

the current energetic and cosmetic refurbishment rates. The other buildings can

also choose refurbishment measures, but with increased costs. Only a few build-

ings are assumed to be under a preservation order: Refurbishment measures are

deactivated for 20% of the MFHs before 1950, 10% of the SFHs before 1950, and

5% of all buildings between 1950 and 1994 [UBA, 2017a]. The resulting share of

the buildings with the construction years and the conditions for future refurbishment

measures are illustrated in Figure 4.9.
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Figure 4.9: Original share of different building construction years at the whole res-

idential building stock. Further, the percentage of buildings is illustrated that were

already refurbished in 2015, and that will be in the refurbishment cycle until 2050,

plus the new constructions until 2050.

Socio-structural changes such as a change of the specific living space or the

population are not considered because of various reasons, as elaborated in Ap-

pendix B.1. Instead, the population and building structure are considered as con-

stant while this work focuses on the impact of a changing energy supply structure.

4.5.2 Strengths and limitations of the aggregation

The novel algorithm to aggregate the archetype buildings is the first method that can

aggregate a building stock on the granularity of municipalities in Germany. It has
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the advantage that it can flexibly derive different numbers of archetype buildings,

depending on the available computational resources and the accuracy wanted. Its

numerical adaption of the archetype buildings to meet the statistical Census data

guarantees a high accuracy of the representation. Further, its regional assignment

of the archetype buildings allows spatially resolved energy performance analysis

and the determination of the impact of building energy supply on central infrastruc-

tures, such as gas or electricity grids.

During the creation of the algorithm, it was alternatively considered to derive as a

first step a set of 18 million real building samples from the Census data, e.g. by

a Monte Carlo simulation. These could then have been used for classical cluster

analysis, e.g. by the k-prototype algorithm. Hence, correlation coefficients between

the different attributes would have been required, which are not available for Ger-

many. This problem is avoided by introducing the aggregation algorithm since it

directly chooses building archetypes that can represent as many of the attributes

in different municipalities, intrinsically respecting the correlations inside the Census

data.

Nevertheless, in case exact building samples are available, it would still be recom-

mended to use conventional cluster algorithms. The fitting of archetype buildings

to meet attribute distributions, as in this work, has the drawback that theoretical

building configurations are created that meet the distribution values but can signif-

icantly deviate from real building instances. Therefore, a qualitative post-analysis

of the resulting archetypes is required, or the solution space for potential attribute

configurations needs to be constrained.

Although the algorithm simplifies the problem of the aggregation of archetype build-

ings, it stays computationally heavy. This is related to the large data set of the

11,339 municipalities, which are all considered simultaneously for the aggregation.

For each municipality, a number of attribute distributions shall be met by a different

set of archetype buildings. For the case that 1,000 archetype buildings should be

assigned to 11,339 municipalities [Bundesamt, 2011], a Quadratic Program (QP)

is stated that has 11.339 million variables. The algorithm runs into memory limi-

tation of a workstation with 512 GB RAM and Gurobi as quadratic program solver

for this amount of archetype buildings. Alternatively, the attribute distributions given

on the level of the NUTS-3 regions could be considered instead of the municipality

level. This would significantly reduce the computational load. Nevertheless, it would

also cause an accuracy reduction on the single building level since unique building

archetypes are not recognizable on higher regional aggregation levels. Instead, the

aggregation of 800 archetype buildings showed clear spatial representation areas

of single archetype buildings. For such high numbers, Germany should be spatially

divided a priori, e.g. to federal states, where independent archetype buildings are

aggregated still for the data on the municipality level. This would break down the
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overall problems to many different sub-aggregation problems that could be solved

in parallel with less memory allocation, constituting higher numbers of buildings that

could be aggregated with the same computational resources. Nevertheless, such a

high resolution is not required for the scope of this thesis and the maximum number

of 800 archetype buildings is sufficient to illustrate the algorithm introduced and to

represent the building stock on an aggregated national scale.

As an outlook for future extensions, the generic formulation of the algorithm allows

the flexible integration of further relevant attributes for the residential buildings stock

in case of available data. Especially, the more accurate distributions of rooftop ori-

entations or the socio-economic background of the occupants and building owners

would be valuable for more detailed analysis.

Further, the algorithm should be transferred to other energy sectors to derive spa-

tially distributed sector specific representatives. Examples are the service sector

including commercial buildings, or also representative fueling stations, whose de-

tailed models could be upscaled to a nationwide perspective while respecting the

spatially varying conditions to supply them. Together, the resulting representatives

could then be integrated into a cross-sectoral spatially resolved bottom-up model

that respects the individual economic entities.

4.6 Summary

This chapter introduced a spatially resolved data set to describe the German resi-

dential building stock and a novel algorithm to derive archetype buildings to repre-

sent it.

Section 4.1 discussed existing building archetype databases and methodological

approaches to derive such. It was concluded that none of the methods reviewed

could derive archetype buildings that represent the building stock spatially resolved

on a nationwide scale.

The relevant attributes to describe an archetype building for energy performance

analysis were introduced in Section 4.2. While most attributes could be based

on existing definitions of archetype buildings, an additional category for attributes

related to the technology adoption behavior of building owners was proposed. Fur-

ther, the building attributes required for the analysis in this thesis were introduced

for the German municipalities, mainly relying on Census data.

In Section 4.3, a mathematical model was stated with the objective to derive
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archetype buildings to represent the different building attributes on the municipality

level with a minimal error. Due to the size and the discontinuities of the model, it

was concluded that it is not solvable with existing algorithms. Therefore, a novel

algorithm was proposed that divides the overall problem into two sub-problems that

are iteratively solved.

The novel algorithm was applied and validated in Section 4.4. It was shown that

the algorithm intrinsically makes a trade-off between the errors occurring in such

an aggregation for the different relevant attributes. Further, it was illustrated that

the overall error measure gets reduced with an exponential decay function with

an increasing number of buildings. Therefore, only a limited accuracy gain results

for a high number of archetype buildings. E.g., the aggregated attribute fit on a

nationwide scale just improved from 98.2 % to 99.5 % from 200 to 800 archetype

buildings.

Section 4.5 discussed the strengths and limitations of the novel aggregation algo-

rithm and explained the integration of further building attributes.
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Chapter 5

Energy supply scenarios for the

German residential building stock

This chapter applies the single building optimization introduced in Chapter 3 to the

archetype buildings aggregated in Chapter 4 for different scenarios.

First, all techno-economic assumptions are introduced for the year 2015 and 2050

in Section 5.1. They define the input for the different scenarios. Second, the the

Reference scenario is introduced in Section 5.2. It states the status quo of the res-

idential energy supply and validates the model to national energy demand statis-

tics. Further, the impact of considering a varying number of archetype buildings

and the consideration of different weather years is analyzed. Section 5.3 presents

the cost minimal residential energy supply structure for the year 2050 and analyzes

the value of different technologies for the overall energy supply, the impact of an

increased refurbishment rate and the sensitivity to the considered gas price. The

objective function is extended in Section 5.3.5 by adding the goal to minimize the

GHG emissions. Thereby, different pathways are introduced to reach a carbon neu-

tral residential building stock. Section 5.4 discusses the results and contextualizes

them to the existing literature. The chapter closes with a summary in Section 5.4.

The different scenario cases and sensitivity analysis are illustrated in Figure 5.1.

5.1 Techno-economic assumptions

The main input assumptions to parametrize the optimization models are introduced

in the following section, e.g. residential energy prices and efficiencies of the dif-
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Figure 5.1: Considered supply scenarios for the German residential building stock

with their objective and related sensitivity analysis.

ferent technologies. Section 5.1.1 defines the parameters for the year 2015, while

Section 5.1.2 extends and adapts them to the year 2050.

5.1.1 Assumptions for 2015

In order to achieve a valid comparison of today’s residential energy supply to the

changes in the future, a valid scenario framework is introduced that represents

today’s cost and operation parameters of the residential energy supply systems.

The considered economic parameters for the supply technologies are illustrated in

table 5.1 while their detailed derivation is discussed in Appendix A.3. The structure

of the investment cost is oriented at the cost model introduced in Section 3.3. It is

differentiated between the fixed investment costs that occur in case of installation,

and the specific investment costs that are added and are related to the scale of the

installations.

In summary, gas boilers and oil boilers are the heat generation technologies with the

smallest investment, besides a simple electric heater. The pellet boiler and the heat
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Table 5.1: Assumed economic parameters of the energy supply technologies for

the Reference scenario.

Technology CAPEX CAPEX OPEX Lifetime Source

fix specific %CAPEX/a a

Gas boiler 2800 Euro 100 Euro/kWth 1.5 20 Appendix A.3.5

Oil boiler 2800 Euro 100 Euro/kWth 1.5 20 Appendix A.3.5

Pellet boiler 10000 Euro 300 Euro/kWth 3.0 20 Appendix A.3.9

Heat pump 5000 Euro 600 Euro/kWth 2.0 20 Appendix A.3.4

Heat storage 800 Euro 1200 Euro/m3 0.0 25 Appendix A.3.7

Photovoltaic 1000 Euro 1400 Euro/kWel 1.0 20 Appendix A.3.1

IC CHP 15000 Euro 1000 Euro/kWel 7.0 15 Appendix A.3.6

Solar thermal 4000 Euro 350 Euro/m2 1.0 20 Appendix A.3.8

Electric heater 0 Euro 60 Euro/kWth 2.0 30 [Lindberg

et al., 2016a]

pumps are more expensive. Their comparison shows that the heat pump is cheaper

for small scales while the pellet boiler has a better economy of scale. It is further

to highlight that the technologies do not exclude each other and can be installed

as combinatorial systems. Therefore, the costs, e.g. of the heat pump, are related

to their sole investment, while peripheral components such as peak boilers or heat

storage systems are independently considered. The Internal Combustion (IC) CHP

unit has a strong economy of scale, making it expensive for small scale applications.

The fireplace has no investment cost because its installation is extrinsically given,

as discussed in Section 4.5.1. Photovoltaic and solar thermal collectors share the

available rooftop areas. Batteries and fuel cells have a negligible market share

today, wherefore their costs are introduced later for the 2050 case.

Although the model allows for modeling different interest rates for different building

types to respect the different investment behavior of the building owners [Schleich

et al., 2016], it is here simplified to a single interest rate of 3 %. It lays between the

2 to 5% considered in the literature [Klingler, 2017; Lahnaoui et al., 2017; Lauinger

et al., 2016; Lindberg et al., 2016a; Schütz et al., 2017a].

The energy and resource prices are illustrated in Table 5.2. The majority of the

prices are derived from the study Energieeffizienzstrategie Gebäude [BMWi, 2015;

prognos, 2015], which was created by prognos, IWU and ifeu. Their assumptions

define the basic scenario framework for this thesis and rely themselves on the En-

ergiereferenzprognose [EWI, 2014]. The majority of the resource prices assumed

in the study align with the energy prices observed for 2016 [Bundesnetzagentur,

2017; BMWi, 2018]. Nevertheless, the assumed gas price overshoots the observed

price of 2016 by more than 1 ct/kWh wherefore it is adapted in this work to the val-
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ues reported for 2016 by the Bundesnetzagentur [2017].

The GHG footprint includes the emissions of the previous conversion processes,

such as in the extraction of fuels, or the GHG emissions of the German power plant

mix.

Table 5.2: Assumed residential energy prices including taxes, levies, and network

charges based on Energieeffizienzstrategie Gebäude [EWI, 2014; prognos, 2015;

BMWi, 2015] while missing parameters are derived from Lindberg et al. [2016b];

KWKG [2016]; EEG [2017]. The gas price is corrected to the observed gas prices

in 2016 [Bundesnetzagentur, 2017]. The GHG footprint and primary energy factors

(PE) are taken from prognos [2015]. FiT refers to Feed-in Tariff.

Technology OPEX-var OPEX-fix GHG PE Comment

- Euro/kWh Euro/a kg/kWh kWh/kWh -

Electricity

supply

0.246 170 0.525 1.8 0.292 Euro/kWh

for 3700 kWh/a

Gas supply 0.065 0 0.250 1.1

Oil supply 0.064 0 0.320 1.1

Pellet sup-

ply

0.060 0 0.014 0.2

Heat pump

tariff

0.190 70 0.525 1.8

FiT CHP -0.08 0 0.000 2.8 for less than 50

kWel

FiT PV -0.108 0 0.000 1.8

District

heating

0.074 327 0.270 0.7 0.096 Euro/kWh

for 15.000 kWh/a

Log supply 0.050 0 0.000 0.2

Further, the price structure is modified from a sole energy price (Euro/kWh) struc-

ture to a combination of a flat price (Euro/a) and an energy price (Euro/kWh). This

is relevant because the savings due to self-consumption, e.g. of photovoltaic elec-

tricity, would get overestimated with a sole energy price. Additionally, this structure

respects that the specific wholesale prices decrease with larger energy consump-

tions rates [Bundesnetzagentur, 2017]. Further, the modeling of a flat price and

a sole energy price respects, e.g. for district heating, the cost of the connection,

which would be otherwise underestimated.

The technical performance of the technologies is summarized in Table 5.3. The

efficiencies are given for the Lower Heating Value (LHV) of gas, oil or pellets. The
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electrical and thermal CHP efficiencies are defined for a fixed operation ratio and

cannot be varied in between. The values are chosen such that the different age

structures of the technologies are respected, e.g. an efficiency is assumed for the

gas boiler that refers to the efficiency of condensing boilers, while for the oil boiler

a lower efficiency is considered that is related to older boiler technologies.

Table 5.3: Summary of the main technical parameters of the energy supply tech-

nologies

Technology Efficiency Comment and Reference

Gas boiler 0.96 Condensing boiler

[Henning and Palzer, 2014]

Oil boiler 0.84 [UBA, 2017b]

Pellet boiler 0.9 [Lindberg et al., 2016a]

Heat pump dynamic Section 3.3.3

quality grade of 0.4

Heat storage 0.99 charge [Lindberg et al., 2016a]

0.99 discharge

0.6%/h self-discharge [Schütz et al., 2015]

Photovoltaic 0.15% based on Hanwha HSL 60 S [King et al., 2016]

with 7 m2/kWp

IC CHP 0.6 thermal [ASUE, 2015]

0.25 electric [ASUE, 2015]

Electric heater 0.98 [UBA, 2017b]

Solar thermal dynamic Section 3.3.5

Fireplace 0.83 [UBA, 2017b; Olsberg, 2018]

The comfort temperature inside the buildings is assumed with a value of 21°C in

case occupants are active at home. The night reduction temperature is set for all

buildings to 18°C.

5.1.2 Assumptions for 2050

The techno-economic assumptions for the future energy supply until 2050 are in-

troduced in the following section. While many parameters are estimated to stay in a

similar magnitude as in the Reference case in Section 5.1.1, this section describes

only the assumptions that are changing for the case of 2050. All prices and costs

are provided as real prices in 2015.
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While no major changes are expected for conventional heat generators, further

learning rates and cost reductions are considered for photovoltaic and electrochem-

ical technologies, as shown in Table 5.4. Their detailed derivation and discussion

is done as well in the Appendix A.3.

Table 5.4: Change and addition of economic parameters of the energy supply tech-

nologies for the year 2050.

Technology CAPEX CAPEX OPEX Lifetime Source

fix specific %CAPEX/a a

Photovoltaic 1000 Euro 650 Euro/kWel 1.0 20 Appendix A.3.1

Battery 1000 Euro 300 Euro/kWh 2.0 15 Appendix A.3.2

Fuel cell 4000 Euro 1500 Euro/kWel 3.0 15 Appendix A.3.3

The technical assumptions for 2050 are shown in Table 5.5. The efficiency of the

heat pumps is expected to increase further in the future [Willem et al., 2017], where-

fore this work assumes an increase of the quality grade to 0.45, which is the upper

bound of today’s systems as shown in Section 3.3.3. The photovoltaic efficiency

is assumed to increase to a value of 30 %, which is discussed in detail in Ap-

pendix A.3.1. Primarily, this impacts the space coverage on the rooftop and in-

creases the photovoltaic potential that can be installed. The technical parameters

of the batteries are derived from a prediction until 2050 [Elsner and Sauer, 2015],

but some of today’s residential storage systems already achieve similar efficiencies

[Kairies et al., 2016].

Table 5.5: Summary of the main technical parameters of the energy supply tech-

nologies for 2050.

Technology Efficiency Comment and Reference

Heat pump dynamic Section 3.3.3

quality grade of 0.45

Photovoltaic 0.3 average 2050 [ISE, 2015]

with 3.5 m2/kWp

Battery 0.95 charge [Elsner and Sauer, 2015]

0.95 discharge [Elsner and Sauer, 2015]

0.01%/h self-discharge [Elsner and Sauer, 2015]

0.5 kW/kWh capacity factor

Fuel cell 0.33 thermal Appendix A.3.3

0.52 electric Appendix A.3.3
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The electrical efficiency of the fuel cell is assumed with 52 % and positions itself

between the efficiency that can be achieved from Solid Oxide Fuel Cell (SOFC)

systems and the efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC),

as discussed in detail in Appendix A.3.3. A fully flexible operation is assumed for

the year 2050. The efficiencies are considered to be the same for natural gas,

biogas or as well potential hydrogen as alternative fuels [Peters et al., 2016].

The energy prices for 2050 are shown in Table 5.6 and are relying as well on the En-

ergieeffizienzstrategie Gebäude [BMWi, 2015; prognos, 2015] and Energiereferen-

zprognose [EWI, 2014]. The Energiereferenzprognose considers a carbon price of

76 Euro/ton for the year 2050, which, e.g., increases the gas price by 1.9 ct/kWh.

Table 5.6: Assumed energy prices, GHG footprints and primary energy factors

(PE) based on the Energieeffizienzstrategie Gebäude [EWI, 2014; prognos, 2015;

BMWi, 2015] for 2050.

Technology OPEX-var OPEX-fix GHG PE Comment

- Euro/kWh Euro/a kg/kWh kWh/kWh -

Electricity

supply

0.220 170 0.122 0.4 0.266 Euro/kWh

for 3700 kWh/a

Gas supply 0.096 0 0.250 1.1

Bio-

methane

0.138 0 0.014 0.2

Oil supply 0.124 0 0.320 1.1

Pellet sup-

ply

0.080 0 0.014 0.2

HP Tarif 0.190 70 0.122 0.4

FiTCHP -0.010 0 0.000 0.4

FiTPV -0.010 0 0.000 0.4

District

heating

0.085 327 0.144 0.5 0.107 Euro/kWh

for 15000 kWh/a

Log supply 0.065 0 0.000 0.2

Further, a bio-methane purchase is integrated with a price of 13.8 ct/kWh, which

can be either a synthetic gas or biogas. Since no sufficient predictions for bio-

methane prices in 2050 are found, its price is derived from the production cost of

bio-methane for the feed-in into the gas grid of 7.5 ct/kWh in 2013 [Bundesnetza-

gentur, 2014], plus the surcharge for grid fees, tax etc. This surcharge is considered

to be 6.3 ct/kWh, which is the difference between the gas market price of 3.3 ct/kWh

and the residential gas price of 9.6 ct/kWh in 2050 [EWI, 2014]. All in all, it results

in a price of 13.8 ct/kWh for the bio-methane, which is significantly above the fossil
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gas price.

No values for future feed-in tariffs were found. Therefore, the feed-in is only

marginally subsided since it is highly dependent on the future market environment.

A marginal value of 0.01 eur/kWh is chosen in order to guarantee that photovoltaic

generation is not curtailed and is instead fed-in to the grid.

The cost and energetic impact of the refurbishment measures for the opaque build-

ing envelope are shown in Table 5.7.

Table 5.7: Techno-economic assumptions for the insulation measures of a single

building. The two measure levels are derived from Schütz et al. [2017a] while the

exact cost and lambda are taken from BMVBS [2012].(* thickness equivalent. **

only capital expenditures related to energetic measures.)

Component Measure Thickness* Lambda CAPEX CAPEX energy **

- m W/m/K Euro/m2 Euro/m2

Wall Base 0.15 0.035 124.0 51.5

Future 0.22 0.035 140.9 68.5

Roof Base 0.24 0.035 237.6 53.0

Future 0.36 0.035 270.0 79.6

Floor Base 0.08 0.035 51.7 -

All measures are additional layers to the existing envelope of the building. The costs

are average values taken from a survey about subsided refurbishment measures

in Germany [BMVBS, 2012]. They differ between the whole CAPEX of a refurbish-

ment measure and the sole additional CAPEX of energy efficiency measures if the

building would have been refurbished anyway, as discussed in Section 4.5.1. The

costs are related to the exterior surface area of the building component. Two levels

of potential insulation measures are considered and differ by the thickness of the

insulation layer, referred to as Base and Future.

The costs of replacing the windows and the changing solar and thermal transmit-

tance of the different window types are shown in Table 5.8 and rely on [BMVBS,

2012] as well. The costs are specific to the window area of the building. Again, it is

differentiated between the two levels Base and Future.

All envelope measures have a lifetime of 40 years with zero operational costs.
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Table 5.8: Techno-economic assumptions for the windows. The transmittance are

based on [Schütz et al., 2017a] and the cost based on [BMVBS, 2012]

Measure Solar transmittance Thermal transmittance CAPEX

- W/m2/K Euro/m2

Base 0.575 1.1 313

Future 0.5 0.7 361.5

Additional to the conventional refurbishment measures at the envelope of the build-

ing, a heat recovery for the ventilation is assumed with a specific investment of 65

Euro/m2 per living area, a lifetime of 25 years and operational cost of 4% per year

BMVBS [2012] in ratio to the original investment. If integrated, 80% of the heat

losses due to ventilation get recovered.

Lastly, an occupancy controller can be installed that reduces the comfort tempera-

ture in case of vacant occupants, as discussed in Section 3.2. Based on the cost

of Controme [2018], they are assumed with a fixed investment of 1000 Euro for the

central system controller and 3 Euro/m2 per living area for the different thermostats

in the rooms, including their installation costs. A lifetime of 15 years is assumed.

5.2 Reference scenario

The overall model consisting of the single building optimization (Chapter 3) of ag-

gregated and spatially assigned residential archetype buildings (Chapter 4) is ap-

plied and validated in the following section. Therefore, the techno-economic as-

sumptions for 2015 from Section 5.1.1 are used. The choice of the technologies

are predefined by the archetype definition discussed in Chapter 4, but the tech-

nology scale and operation are optimized such that the building specific energy

demands are met. It defines the Reference state of the residential energy supply,

which is used as a benchmark for the future scenarios.

Since the energy demands of the single building model are already validated,

this chapter focuses on the overall residential energy consumption on a nation-

wide level. First, Section 5.2.1 shows the impact of choosing different numbers

of archetype buildings on the resulting final energy demand and concludes a suf-

ficient number of archetype buildings for further scenarios. The effect of different

weather years on the model performance is compared in Section 5.2.2. Additionally,
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Section 5.2.3 illustrates the spatial differences of specific energy costs and GHG

footprints due to the different building types and supply technologies in Germany.

5.2.1 Impact of the number of archetype buildings

This section analyzes the impact of a varying number of archetype buildings on

the prediction accuracy of the aggregated nationwide residential energy demand.

Therefore, the different numbers of aggregated archetype buildings that are intro-

duced in Section 4.4 are independently optimized for the Reference scenario and

then multiplied with their appearance in Germany. Each building is optimized with

a single occupancy profile.

The resulting final energy demands are aggregated to different energy carriers and

illustrated in Figure 5.2. They are validated against the final energy demand pro-

vided by AGEB [2017] that are themselves calculated by a top-down approach to

estimate the aggregated energy demands for all sectors, mainly relying on con-

sumption data provided by the energy suppliers.

Figure 5.2: Final residential energy demand predicted for different numbers of

archetype buildings.

The dominant energy carriers for the residential sector are gas, oil and electricity

with 268, 162 and 136 TWh/a per year [AGEB, 2017]. The demand for renewable

energy or district heating is secondary with 84 and 51 TWh/a per year. As seen in

Figure 5.2, the model is able to roughly predict with five to ten archetype buildings
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the demand of the three dominant energy carriers, but the appearance of minor

energy supply carriers is not sufficiently included. This improves with an increasing

number of archetype buildings while the best fit can be achieved with 800 buildings,

the highest number considered. The resulting demands of 64.8 TWh/a for renew-

ables and 44 TWh/a for district heating are still an underestimation. This deviation is

constituted by the aggregation, which tries to capture the most appearing archetype

buildings and neglects rarely occurring building types. Nevertheless, these miss-

ing energy demands for renewables and district heating are compensated by gas

and oil demands, which are slightly overestimated with 286 and 165 TWh/a. This

compensation effect appears already for 25 archetype buildings wherefore all cases

between 25 and 800 archetype buildings predict the total final energy demand in a

similar magnitude as the AGEB [2017]. Above 200 archetype buildings the share of

the different energy carriers also aligns well with the structure of the AGEB [2017].

The prediction with 50 archetype buildings overestimates the demand for oil with

27.4 % and underestimates the demand for gas by 17.1 %, while 100 archetype

buildings on the contrary overestimate the gas demand by 25.5 % and underesti-

mate the oil demand by 16.1 %. This switch shows a drawback of the aggregation:

Some archetype buildings appear often and have therefore a high impact on the

overall energy load. If the majority of the buildings supplied, e.g., with gas boilers

have a construction year before 1960 while the more modern buildings are sup-

plied with oil, an overestimation of the gas demand and an underestimation of the

oil demand results, although the absolute number of the different boiler types is

well represented. This can change for a different number of archetype buildings

since the input values rely on attribute distributions, which have to be met on an

aggregated perspective, while the correlation between the attributes are with few

archetype buildings not well respected. Nevertheless, this effect is reduced with

an increasing number of archetype buildings since single archetypes represent at-

tribute distributions on a more granular level. In consequence the spatial differ-

ences, e.g. of construction years, are better fitted and intrinsic correlations of the

input data are represented with a higher accuracy.

The temporal prediction of the resulting electricity load is validated in Figure 5.4. It

shows the sorted load curves predicted with different numbers of archetype build-

ings together with the sorted load curve of the Standard Load Profile (SLP)[BDEW,

2011], scaled by the electricity demand of the residential sector in 2013 [AGEB,

2017]. It is observed that for a small number of archetype buildings the peak

demand gets overestimated since statistical balancing effects between different

households cannot be sufficiently expressed, resulting in an RMSE of 3.66 GW

between the SLP and the prediction with 10 archetype buildings. This deviation

could be either reduced by optimizing every building with different occupancy pro-

files, or by increasing the number of archetype buildings: For already 200 buildings

the RMSE decreases to a value of 1.33 GW.



98 5 Energy supply scenarios for the German residential building stock

Figure 5.3: Sorted aggregated electricity load for different numbers of archetype

buildings in comparison to the sorted electricity load based on the SLP [BDEW,

2011] scaled with the residential electricity demand in 2013 [AGEB, 2017].

The computational load of optimizing the Reference energy supply of the increas-

ing number of archetype buildings is shown in Table 5.9. Obviously, the runtime

increases with a higher number of archetype buildings. Nevertheless, from 5 to

50 buildings, the relative increase of the runtime is below the relative increase of

the building number, since more threads can be used in parallel to optimize the

buildings. Above 100 archetype buildings, the runtime proportionally increases with

number of archetype buildings since the maximum number of threads is used: 200

archetype buildings have a runtime of 45 minutes while 800 buildings run 181 min-

utes.

Table 5.9: Runtime of the Reference scenario for a varying number of archetype

buildings while using 100 threads in parallel on a workstation with two Intel(R)

Xeon(R) Platinum 8180 CPUs and 512 GB RAM.

Number of buildings 5 10 25 50 100 200 400 800

Runtime [min] 2.2 2.6 4.6 8.3 21.0 45.3 89.6 181.0

Therefore, it first seems reasonable to consider the highest number of archetype

buildings for the further scenarios and sensitivity analysis since a runtime of three

hours would be acceptable. Nevertheless, the Reference optimization has a rather

low computational load in comparison to the future scenarios because the system

configurations are predefined and additional refurbishment measures are not con-

sidered. In consequence, all binary decision variables that will make the further

scenarios more challenging to solve are not yet included .
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Instead, this work assumes 200 archetype buildings as a sufficient trade-off be-

tween accuracy and computational load since they already capture the main diver-

sity of the energy carriers and the statistical balancing effects between the build-

ings.

5.2.2 Impact of different weather years

The following section evaluates the impact of different weather years on the energy

demand of the buildings. While the majority of the national energy performance

analysis relies on degree days, this work uses the highly temporally and spatially

resolved COSMO rea-6 reanalysis weather data [Bollmeyer et al., 2015]. Hourly

values are considered that are provided for 880x856 grid points spanning over Eu-

rope. Every archetype building gets the weather data assigned from the grid point

that is closest to its location.

The resulting final energy demand for different weather years is illustrated in Fig-

ure 5.4 for 200 archetype buildings and validated again to the final energy demand

values provided by AGEB [2017]. According to AGEB [2017], the total residential

energy demand varies from 743 TWh in 2010 as maximum to 608 TWh for 2014 as

minimum.

For all different weather years, the systematic overestimation of gas demand and

underestimation of district heating demand is observed, as already discussed in

the previous section. Nevertheless, the relative deviation differs between the years.

While the total final energy demand fits well for 2010 with an underestimation of

below 2%, the deviation increases in the year 2011 up to 7.4 %. It reduces again

to 2.8 % in the year 2013 while it has in 2014 again a value of 5.8 %. The differ-

ences are mainly constituted by the different demands for all energy carriers used

to supply the space heat, while the electricity demands stay almost constant for the

periods.

Figure 5.5 shows the spatial distribution of the final energy demand averaged for all

the considered weather years. It clusters in the cities as expected. Additionally, the

relative changes of the final energy demand for the different weather years are il-

lustrated for the different municipalities. The overall magnitudes of differences align

with the differences shown in Figure 5.4. Nevertheless, it is clearly recognizable

that different weather years impact the annual energy demand spatially differently:

While the year 2010 was generally a cold year, in northern Germany the final en-

ergy demand is even 17% above the average while in south-west Germany it is only

11 % higher than the average. This is the opposite in 2013: Southern Germany’s

energy demand lays 9 % above the regional average, while northern Germany just
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Figure 5.4: Final energy demand for different weather years predicted with 200

archetype buildings and compared to the values reported by the AGEB [2017]. The

energy demands for Test Reference Year (TRY) are just calculated with the model.

lies 5 % above the average.

In 2014, no significant differences due to the geo-position are observed. Never-

theless, it becomes clear that the cities are less sensitive to the weather patterns

(11.5 % below the average in 2014) than the rural areas (13.5 % below the average

in 2014). The reason is that the relative share of energy demand for space heating

to the overall energy demand is in the cities smaller than in the rural areas, reducing

the relative impact of weather years on the total energy demand.

The energy demand determined by the weather data of the Test Reference Year

(TRY) [DWD, 2012] aligns almost to 100 % with the average energy demand for the

considered weather years in northern Germany. On the contrary, in the south it is

up to 20 % higher than the average. Nevertheless, this work will rely on the TRY

data for the further scenarios since many standards for the design and evaluation

of building energy systems depend on it as well. Additionally, the prediction of the

energy demand with the TRY is higher than the average prediction with the real

weather years. This can compensate for the relative underestimation to the final

energy demand in comparison to the AGEB [2017].
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Figure 5.5: Spatial distribution of the final energy demand, averaged for the con-

sidered years 2010 until 2015, and the relative regional deviation from the average

value.

All in all, the magnitudes of the spatial energy demand deviations due to different

regional weather patterns are in a similar range as the deviations of the model to

the validation set. Therefore, it can be concluded that a sufficient accuracy is given

by the model, especially because previous works most often just worked with single

weather locations or even only degree days.

Further, the analysis illustrates that the novel spatially resolved approach is able

to identify local extreme weather patterns. While it was shown here only for the

aggregated annual demand, the model also predicts the temporal demand of the

energy carriers in all municipalities and can be used for the identification of local

peak demands that are relevant for infrastructure design.
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5.2.3 Spatial distribution of energy demand, cost and GHG footprints

The impact of the different regional energy demands of the residential buildings on

the cost and GHG footprints are discussed in the following section for the case of

200 archetype buildings and the weather year 2013. The results are still based on

the assumptions made in Section 5.1.1.

Figure 5.6 illustrates the demand for electricity, other energy carriers (oil, gas, dis-

trict heating and renewables), and the GHG footprints specific to the available living

area in the buildings. First, it is clearly recognizable that the demand for electricity

specific to the living area is higher in the rural areas, which itself is constituted by

the higher density of occupants per living area. A reverse effect is observed for the

other energy carriers: They are mainly constituted by the demand for space heating

and are with around 120 kWh/(m2 a) significantly lower in the urban area than in

the rural areas with 160 kWh/(m2 a) due to lower surface-area-to-volume ratios and

a lower share of detached buildings.
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Figure 5.6: Spatial distribution of the final energy demand for electricity, the final

energy demand for other energy carriers and the GHG emission equivalents spe-

cific to the living area in the Reference scenario.

Further, it is observed that the specific energy demand in the rural areas of the new

federal states is with up to 200 kWh/(m2 a) significant higher than in the rural areas

of the old federal states of Germany. Since the building stock in east Germany

is older, also the materials used in the envelope of the buildings have a worse

energetic performance, resulting in a higher overall energy demand.
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This also impacts the specific GHG footprints, which are almost 30 % higher in the

new federal states in comparison to the old federal states, peaking in the south-east

with a GHG equivalent of 70 kg/(m2 a), including the GHG footprint of the electricity

demand. Clear differences between rural and urban areas cannot be identified

anymore since the spatially opposing effects of the specific electricity and space

heating demand compensate for each other.

The resulting operational energy costs, mainly the cost due to the energy carrier

import, are visualized in Figure 5.7.
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Figure 5.7: Spatial distribution of the operational energy cost per living area, per

household and per person in the Reference scenario.

The energy costs per living area are in the new federal states higher than in the old

federal states, equivalent to the GHG emissions. Yet, no significant difference be-

tween eastern and western Germany is recognized for the case of the energy cost

per household since the specific living areas per household are smaller in east-

ern Germany, compensating for the higher area specific energy demands. Instead,

a significant difference between the rural areas with 1400 Euro/a and the urban

areas with above 2000 Euro/a per household is recognizable. The urban areas

have significantly smaller living areas and lower specific energy demands for space

heating. Additionally, the number of occupants per household is lower in the urban

areas wherefore also the electricity demand is smaller. The visualization of the en-

ergy cost per persons reveals that especially the rural areas in eastern Germany

have high specific energy costs. The reason is that a small number of occupants

per household are living in buildings with a high specific demand for space heating.
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The differences between the old federal states and the new federal states need to

be evaluated with caution: The new federal states have higher refurbishment rates

[IWU, 2018], although a uniform refurbishment rate for the whole of Germany is

considered in this work. Further, regional differences of electricity and gas prices

are not included and could affect the regional energy prices besides the energy

demand itself.

Nevertheless, the section shows that the model is able to transfer the regional differ-

ences of the building and occupancy structure into the techno-economic evaluation

of the regional energy supply.
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5.3 Min Cost scenario in 2050

In order to predict the change of the supply structure in the future, the overall model

is applied to 200 archetype buildings for the techno-economic assumptions in 2050,

which are defined in 5.1.2. It is implied that the building owners have a technology

adoption that minimizes their cost. This scenario is referred to as Min Cost. The re-

sults define the overall state that the residential energy supply system is converging

to if the assumed energy prices of the Energiereferenzprognose and the techno-

economic assumptions for the technologies will arise and no further incentives are

given by the regulators. The demand for the usage of electrical devices, hot wa-

ter demand and thermal comfort level will stay the same as today, as discussed in

Chapter 3.

The choice, scale, and operation of the considered energy supply technologies are

optimized together with the heating system and potential refurbishment measures.

The cost for envelope refurbishment measures differs between buildings that are in

the refurbishment cycle and buildings that are not, as discussed in Section 4.5.1.

The results are shown and discussed in Section 5.3.1 for the aggregated nation-

wide perspective. Section 5.3.2 points out the regional and building specific differ-

ences of the supply structure and the different usage of the central infrastructure.

The value of different technologies for the energy supply or the impact of higher

refurbishment rates are analyzed in Section 5.3.3. The section reveals further the

sensitivities of the model.

5.3.1 Nationwide analysis

The following section provides a techno-economic analysis of the Min Cost sce-

nario on a nationwide scale. Therefore, the overall structure of the total residential

annual expenditures for the resulting energy supply are illustrated in Figure 5.8.

These annual costs can also be referred to as cost of comfort, which integrates all

costs that are related to residential electrical device usage, hot water demand and

thermal comfort.

The annual costs amount to 65 billion Euro per year for the whole residential sector

in Germany, or 1603 Euro per year per household. More than 53 % of the costs

are still caused by energy imports of gas and electricity. The other expenditures

are related to investments in the supply structure or energetic refurbishment mea-

sures, as visualized in Figure 5.9. To realize the technology portfolio, an overall

investment of 382.3 billion Euro is needed. The biggest share are the photovoltaics
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Figure 5.8: Composition of the total annual costs over the whole of Germany for

the Min Cost scenario in 2050.

with 12.4 % and a total investment of 104.6 billion Euro, which is high by keeping

in mind that cost reductions are assumed and no investment incentive is given to

build photovoltaics for grid feed-in.

The second highest investment are the heat pumps with 88 billion Euro and a share

of the annual cost of 11.8 %, indicating that they are the main supplier of space

heat. Fuel cells are the chosen flexible co-generation option and amount to 5.4 %

of the annual costs, while ICT CHP units are not chosen at all. Although the ICT

CHP have a better economy of scale than the fuel cells, this is not sufficient to

compensate for the higher efficiency of the fuel cell, which is relevant since an

increase of the gas price is assumed for the scenario. The heat storage systems

make out 1.9 % of the annual costs and have a total investment of 21.8 billion

Euro. The investment of the batteries is significantly lower with 6.9 billion Euro,

amounting to 1 % of the annual costs. The log supply for the fireplaces amounts

to 2.1 % while the electric heaters have a minor share. District heating, oil boilers

and pellet boilers are not chosen in the solution since they are not competitive in

comparison to the heat pumps or gas boilers.

The share of solar thermal is negligible with an investment below 0.1 billion Euro,

illustrating that its deployment is not cost optimal in the scenario. In consequence,

the photovoltaics do not have to compete with other technologies and can be freely
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deployed to the available rooftop areas.

Figure 5.9: Total investments into the different measures in the residential buildings

for the Min Cost scenario in 2050.

The refurbishment measures together account only for 7 % of the annual costs

while more than half of them are determined by the walls. The occupancy control

systems have a relatively high share with 1.6 %, followed by the windows and the

roofs. A reason for the relatively small cost share of the efficiency measures is that

mainly those are chosen that are in the refurbishment cycle anyway and do not

account for high additional energetic costs. Further, the long lifetime of the refur-

bishment measures determines small capital recovery factors. In consequence, the

total investment is relatively higher than the share of the annual costs indicate: The

energetic cost for the refurbishment of the walls, e.g., amount to 53.6 billion Euro in

total.

The resulting cumulative energy flows between the different technologies are il-

lustrated in Figure 5.10 for the aggregated level of the whole of Germany. While

no changes are considered for the electricity and hot water demand with 113 and

76 TWh/a, the space heating gets reduced to 310 TWh/a in comparison to the

449 TWh/a in the Reference scenario. The largest share of space heating gets sup-

plied by the heat pumps with 225 TWh/a, while the gas boilers supply 66 TWh/a.

The electric heaters also still generate 40 TWh/a, followed by the fuel cell with

34 TWh/a. The fireplace has only a minor share while the production by solar

thermal is negligible. The usage of the heat storage increases by magnitudes in

comparison to the Reference scenario and discharges 51 TWh/a.
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Figure 5.10: Annual energy flows in TWh between the different technologies ag-

gregated for the whole of Germany for the Min Cost scenario

The electricity produced for self-consumption adds up by 89.7 TWh/a from pho-

tovoltaics and 53.9 TWh from the fuel cell. Only 24.1 TWh/a of the photovoltaic

electricity is fed-in to the grid due to the marginal incentive of 0.01 Euro/kWh. No

electricity generated by the fuel cell is fed-in to the grid since the incentive is too

small to recover the fuel costs. The majority of self-produced electricity is used in

the flexible generators, such as heat pumps with 34.3 TWh/a and electric heaters

with 40.8 TWh/a. Only the remaining electricity is used for inelastic hot water gen-

eration or electrical devices. The residual electricity is imported from the grid with

51.5 TWh/a for the inelastic device demand and 20.4 TWh/a for the heat pumps,

which is in sum less than the amount of the self-generated electricity used inside

the buildings.

The resulting electricity grid exchange, defined by the electricity imported for the

heat pump, the conventional electricity demand, and the photovoltaic feed-in is il-

lustrated in Figure 5.11. For comparison purposes, the grid exchange of the Refer-



5.3 Min Cost scenario in 2050 109

ence scenario is shown as well. The aggregated electricity load of the Reference

scenario is dominated by the occupant activities in the morning and the evening.

A small variation between winter and summer appears. The overall load peaks in

the evening hours during winter with 36.4 GW. This aggregated load significantly

changes for the Min Cost scenario: During the summer the load demand is reduced

to values below 10 GW, also for the evening hours, while during the day high feed-

in rates of the photovoltaic occur with up to 43.1 GW, exceeding the peak demand

of the Reference scenario. The impact of the photovoltaic gets reduced during the

winter but still reduces the load at noon for most days. The evening hours in winter

are still the peak times with a load up to 32.3 GW for the Min Cost scenario, which

is in a similar magnitude as the Reference scenario.

Figure 5.11: Aggregated grid exchange of the national residential building stock for

the Reference and the Min Cost scenario.

Since the heat supply significantly affects the electricity load, the different operation

patterns of the relevant heat generators and the demand for space heating are visu-

alized in Figure 5.12. Obviously, the heat demand is dominated by the winter days.

It peaks with 114.4 GWth in winter morning hours when the night reduction gets de-

activated, people wake up, and the heating system heats the building up to comfort

temperature level. The load is then reduced during the day due to vacant occupants

and solar heat gains. An opposite effect is observed in transient seasons during

spring when the heat supply correlates more to the solar irradiance. The heat pump

operation has in those periods a strong correlation with photovoltaic feed-in in order

to increase the residential self-consumption. It uses then the thermal capacity of

the building to heat it up during the day. This is not possible in winter, since the

heat pump is most operated under full load without a remaining flexibility, resulting

in total with 3790 full load hours with a thermal peak load of 59.4 GW. Instead, the

gas boiler is used as a peak boiler at the morning and evening hours in winter with

a peak load of 30.2 GW and 2181 full load hours. The electric heater is entirely

correlated to the photovoltaic and is primarily used in summer for hot water gen-
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eration, since the heat pumps cannot guarantee the high temperatures to supply

hot water. Fireplaces are only operated in cold winter days with a stochastic profile

correlated to the occupant activities and peak in the evening hours. Fuel cells are

operated supplementary to the photovoltaic generation as flexible generators for

self-consumption. In many winter days all of them are operated entirely in full load

for the whole day. The produced heat of the fuel cells has only a minor share of

the total heat supply with 8 GW peak and 4253 full load hours. Nevertheless, the

resulting electricity generation has a peak of 12.7 GW and significantly decreases

the electricity demand from the grid.

Figure 5.12: Heat flows of the relevant heat generators to the heat node and the

connected demand for space heating for Germany in the Min Cost scenario in 2050.

In order to evaluate the role of the storage systems in the energy supply, Figure

5.13 illustrates their state of charge. The usage of the 16.9 GWh batteries is clearly

correlated with the photovoltaic generation by charging the batteries during the day

and discharging them in the evening hours when the electricity demand by the oc-

cupants increases. They reach their peak state shortly before sunset in the summer

months. The available capacities are excessively used and this daily cycle is recog-

nizable almost for the whole year, except for a few winter days when no photovoltaic

generation exists. The maximal state of charge of the heat storage systems is, with

138 GWh, significantly higher than the maximal state of charge of the batteries.

They also have a daily pattern that reaches the peak state of charge in the evening
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hours of the transient months, constituted by a charging of the photovoltaic oper-

ated electric heater. In the winter days, it gets slowly charged during the night and

is then discharged in the morning hours to meet the peak demand for hot water and

space heating.

Figure 5.13: Aggregated state of charge of the battery and the heat storage for

Germany in the Min Cost scenario in 2050.

The accumulated installed capacities of the different technologies are shown to-

gether with the maximal aggregated load in Table 5.10, which was already partially

introduced in the paragraphs before. It is striking that the aggregated peak load

is below the installed capacity for all technologies. One would expect that a cost

minimal system results in a design where the technology capacity is just able to

reach the technology peak load. Instead over-capacities are installed. The main

reason for solar thermal and photovoltaic over-capacities is that their operation is

highly depending on the solar irradiance. Their peak load is defined for optimal so-

lar irradiance conditions that do not occur simultaneously for all installed capacities

since they have different geo-positions or different installation angles.

The reason for the over-capacities of the other technologies is also related to the

bottom-up approach: Every household with its different heat and electricity demand

optimizes itself. Therefore, cheap technologies such as the gas boiler or the electric

heater are designed to balance the different heat, hot water and electricity profiles.

In consequence, these capacities are required at different times in different build-

ings and locations. Thus, a sole aggregated perspective would underestimate the

required technology capacities: The total installed capacity of the electric heater is

almost by a factor of three bigger than its aggregated peak load. The heat storage

capacity is around 50% higher than the maximal aggregated state of charge and

the gas boiler capacity is 20% higher than its aggregated peak load. Cost inten-

sive technologies such as heat pumps or fuel cells are often operated at full load.

In consequence, the probability that all buildings operate them at full load at the

same time is high. Therefore, their aggregated peak load is almost the same as the

installed capacity.
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Table 5.10: Maximal load and installed capacities of the significant technologies for

Germany in the Min Cost scenario in 2050.

Unit Max. load/

generation

Installed

capacity

Photovoltaic GWel 80.66 133.40

Solar thermal GWth 0.15 0.21

Gas boiler GWth 30.24 36.63

Heat pump GWth 59.40 60.40

Electric heater GWth 36.29 99.65

Fuel cell GWel 12.68 12.69

Heat storage GWhth 138.18 215.60

Battery GWhel 16.72 16.90

5.3.2 Diversity of the energy supply

While the previous section discusses the results of the Min Cost scenario on a

nationwide scale, the following section presents the results and characteristics for

different regions and buildings.

The overall results are aggregated from the optimal system design of the different

archetype buildings, whose cost structure is illustrated in Figure 5.14. The total

annual cost of the buildings is scaled by the number of households in the buildings

to show different sizes of buildings on a similar scale. In order to expose patterns

between the buildings, they are manually clustered to four groups based on their

resulting supply system. The Single Family Houses (SFHs) are differentiated be-

tween those with and those without heat pumps. The Multi Family Houses (MFHs)

are distinguished between those with and without fuel cells, while the group without

fuel cells is much smaller than the group with fuel cells.

In general, the only technology that is chosen for almost all buildings is rooftop

photovoltaic. With the small cost of the photovoltaic panels and the high electricity

price, they occur in the cost optimal solution for various scales but independent on

the roof orientation of the building.

Except for one SFH that has a completely self-sufficient electricity supply, no other

SFH has a fuel cell installed. Since the demand profile of a single-family house is

highly volatile, the achievable full load hours for self-sufficient electricity supply are

too small that a fuel cell would become economically feasible. Further, the required

capacities of the fuel cell would be small, increasing the specific cost due to missing
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Figure 5.14: Cost composition of the different archetype buildings for the Min Cost

scenario in 2050. They are grouped by Single-Family House (SFH) with and without

(wo.) heatpumps and Multi-Family Houses (MFH) with and without (wo.) fuel cells.

the economy of scale.

Moreover, it is striking that the occupancy controllers are primarily installed in SFHs

with gas boilers. The building cluster with gas boilers is dominated by compact

buildings where only a few rooms need to be equipped with the thermostats, con-

stituting small investment costs. Moreover, the heat capacity of those buildings is

small and constitutes limited thermal inertia. This is beneficial for the occupancy

controller since the building can cool down and heat up faster in case of vacant

occupants.

All MFHs with a fuel cell have an additional heat pump installed. The cheap self-

supply with electricity benefits electrical heat generation. Some of the MFHs add
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a battery system to increase the share of the photovoltaic electricity that can be

self-consumed.

Although over 60 % of the buildings are in the refurbishment cycle, only 33% of the

shown buildings add insulation to the walls and 7% refurbish their roof. Neverthe-

less, 39% of the archetype buildings get equipped with the occupancy controller,

stating that it is in general the most cost effective efficiency measure.

The different full load hours and capacities of the technologies in the different

archetype buildings are shown in Figure 5.15. The scale of the dots indicate how

often the archetype buildings are assigned in total in Germany. In general, it can

be seen that although photovoltaics are installed in all buildings, the achievable full

load hours vary from 683 to 1025 depending on the roof orientation and the location

of the archetype building.

The highest full load hours are, with around 5000, achieved by the fuel cell. It

is observed that a bigger fuel cell capacity correlates with higher achievable full

load hours. This is mainly related to the occupancy profiles in the buildings where

bigger buildings have, due to statistical balancing effects, flatter profiles that can be

covered with higher self-generation rates. Opposing effects are observed for the

peak generators, such as the gas boiler with around 2000 full load hours and the

electric heater with below 1000 full load hours: The bigger the installed capacities

are, the smaller are the achievable full load hours. For the heat pump no such

effect is observed. It is operated with between 3000 to 4000 full load hours for

small capacities as well as for big capacities.

The distribution of scales and full load hours indicates that the heat pumps signif-

icantly rely on a peak boiler, since their scaling to the maximal heat load would

be more expensive. Nevertheless, it is open which peak boiler is chosen in the

model. For a few full load hours, the electric heater is more cost effective while

for many peak load hours an investment into a gas boiler could be advantageous.

From a central infrastructure perspective, both options bear an intrinsic economic

issue since they need the layout of an infrastructure that will be used in its maximal

capacity only for a few hours.

Due to the assignment of the archetype buildings to the municipalities, the differ-

ent system designs of the archetype buildings also constitute different loads and

cost compositions in the municipalities, as illustrated in Figure 5.16. While this cost

structure is available for all regions, here only the total annual costs for Köln, an ex-

ample of an urban region, in comparison to Heimbach, an example of a rural region,

are illustrated. The main energy carrier for the energy supply in the urban region is

gas and counts for 36.6 % of the annual costs. It is mainly used for self-generation

in fuel cells, which amount to 8.4 % of the annual costs. Therefore, imported elec-
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Figure 5.15: Full load hours and capacity of the installed technologies in the differ-

ent archetype buildings for the Min Cost scenario in 2050. The size of the scatter

is related to the overall appearance of the archetypes in Germany.

tricity has in the urban region only a share of 18.2 % of the total costs. This is

different in the rural region, where the costs for the fuel cells are negligible and

the only self-consumed electricity is generated by photovoltaics. In consequence,

the majority of electricity is purchased from the grid and amounts to 36.4 % of the

annual costs. This difference indicates a structural problem of distributed flexible

generation: Co-generation units have in general a strong economy of scale and are

not competitive in regions with small energy demand densities. In consequence,

those regions will still rely more on an energy import by the electricity grid.

Similar to the results of the Reference scenario, the energy costs per household

in the urban region are with 1243 Euro/a much smaller than in the rural regions

with 2010 Euro/a. This is still mainly constituted by the different specific energy

demands due to the different building structures, as already shown in the Refer-

ence scenario in Section 5.2.3. Nevertheless, it is noteworthy that the uptake of the

distributed energy resources, mainly of fuel cells and photovoltaics, does not signif-

icantly distort the distribution of residential energy costs from the status today with

significant higher costs in the rural areas. The reason is that self-consumption of

cheap photovoltaic electricity exists in small scales in the urban areas. Additionally,

the co-generation units have a better economy of scale in the urban areas.

The spatial differences of the technology installations are further clarified in Figure
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Figure 5.16: Illustration of the composition of the annual costs for Köln and Heim-

bach in the Min Cost scenario.

5.17, illustrating the capacities installed per household in the different regions. The

installed thermal capacities of the heat pumps range from 0 to 4 kW thermal per

household. The highest heat pump capacities are installed in the rural region of

the old federal states: The demand for space heating per household is there the

highest since these regions are dominated by large SFHs. The rural areas in the old

federal states have smaller heat pump capacities or even none installed at all. The

reason is that a sole gas boiler with lower investments can be more cost effective

for the small SFHs in this region. The smallest capacities are installed in the rural

areas since also the specific heat demand per household is low in the MFHs.

Similar regional trends as for the heat pumps are also observed for the photo-

voltaics: Large buildings constitute large roof areas that are available for photo-

voltaic installations up to 6.6 kW per household. Further, the number of occupants

per household and the heat pump capacities are higher in the rural areas wherefore

the potential for self-consumed electricity is higher. The photovoltaic installations in

the urban regions decrease instead to 2.2 kW per household.

The fuel cell has an opposing trend compared to the photovoltaic and the heat

pump. It is mainly installed in urban areas with up to 0.5 kW electric per household.
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Figure 5.17: Regional technology installations per household for the Min Cost sce-

nario.

There, sufficient full load hours can be reached with the high electric and thermal

demands of the multi-family houses.

Although the capacities of the other technologies also vary between the regions,

the three technologies introduced cause the major changes to the grid load, as

illustrated in Figure 5.18. As expected, the majority of the regions reduce their an-

nual electricity demand with the help of self-generation by photovoltaics and fuel

cells. Nevertheless, regional differences are high: While urban areas are able to

reduce their electricity demand by 60 %, some rural areas even increase their elec-

tricity demand. The high photovoltaic installation in the rural areas is not sufficient

to compensate for the increased electricity demand by heat pumps. This effect in-

tensifies for the case of the peak load: Almost no photovoltaic feed-in exists in the

winter days, while the heat pumps are being operated full load. Therefore, regions

characterized by large SFHs double their peak load. This is different for the urban

areas that even reduce their peak load because the fuel cells exceed the electrical

capacity of the heat pumps and are synchronously operated. Equivalent regional

trends are observed for the feed-in: The rural areas feed up to 40 % of the original

electricity demand into the grid, while the urban areas have only small feed-in rates

of 10 %.

Striking are the high demands in Rhineland-Palatinate and Saarland. It is partially

explained by the structure of the municipalities: The municipality boundaries are in

this region relatively small and do not have any MFHs included. In consequence,
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Figure 5.18: Spatial change of the peak electricity demand and the change of the

cumulative positive demand from the Reference scenario to the Min Cost scenario.

Further, the amount of electricity feed-in to the grid in the Min Cost scenario is

shown in ratio to the cumulative electricity demand in the Reference scenario.

no fuel cells are installed that would be available to reduce the peak load in the

winter months. Instead, rather high heat pump capacities supply space heating for

the SFHs, constituting an increase of the demand.

The reason that it stands out that strongly from the other rural areas is also con-

stituted by the model approach: Single archetype buildings are overrepresented in

different municipalities for a coarse resolution of 200 archetype buildings. If on of

those single buildings is highly sensitive to the scenario frame and its change of

the supply structure stands out in comparison to the change of the other archetype

buildings, the changing grid load is overestimated for the set of municipalities that

it is representing. This obstacle is further clarified in Appendix B.3.

Still, in summary, the results indicate that the change of the energy supply in the

rural areas is more challenging with respect to the electricity grid operation than

the changes in the urban areas. The demand for electric heat generation is higher

due to a larger heat demand per household, the photovoltaic generation is not

able to reduce the electricity demand in the winter hours, and fuel operated flexible

self-generation is more expensive to compensate for the increasing demand of the

electricity.
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5.3.3 Value of analysis

The following section provides an analysis of the sensitivities of selected technolo-

gies on the Min Cost result. Again, 200 archetype buildings are optimized but parts

of the technologies are excluded or forced into the solution space in order to evalu-

ate the robustness of the Min Cost scenario.

Figure 5.19 illustrates the resulting cost composition of the different cases that were

considered for the analysis. Gas supply, fuel cell, photovoltaic, heat pump and re-

furbishment measures are each excluded from the solution space and optimized,

and then compared to the original Min Cost scenario with all technologies avail-

able. The increase of the total systems costs can be interpreted as Value Of the

integration of a certain technology. As an additional case, the full package of re-

furbishment measures are enforced for all buildings that are in the refurbishment

cycle in order to reach lower demands for space heating. The total investment, the

energy flows and the installed capacities are found in the Appendix C.3.

Figure 5.19: Annual cost of the Min Cost scenario and the resulting aggregated

system cost if the solution space is constrained.

In the case that the fossil gas supply is excluded from the solution space, the elec-

tricity purchase doubles while no fuel cells are installed anymore. The bio-methane
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or another renewable fuel are too expensive in the considered scenario to replace

the fossil gas in the fuel cells and to compete with a an electricity import from the

grid. Instead, higher capacities of photovoltaics are integrated into the solution with

up to 160.3 GW. Further, the aggregated cost for heat pumps increases by 38 %

since their share of the heat supply increases. While the Min Cost solution did

not include district heating or pellet boilers, they are used in small scales for the

case that fossil gas is excluded. 8.67 TWh/a of the fossil gas are compensated for

with more expensive bio-methane, which is burned in 5.12 GW of gas boilers. The

amount of occupancy controllers is also reduced without fossil gas. The reason is

that the heat pump is intensively used during the day in order to use photovoltaic

electricity while heating up the building. Nevertheless, the occupancy controller

lowers the comfort temperature especially during the day when the occupants are

working. These two temporally opposing effects reduce the value of an occupancy

controller for the buildings supplied with heat pumps.

The structural changes to the Min Cost scenario are rather small for the case that

the fuel cell is excluded from the solution space: The net electricity import increases

as in the previous scenario and compensates for the missing self-generation, but

the photovoltaic capacities just increase from 133.4 GW to 142.3 GW, while the heat

pump capacities stay in a similar magnitude. This is different to the previous case

and indicates that the value of further photovoltaic capacities is mainly correlated to

higher heat pump capacities and not to smaller fuel cell capacities. It is noticeable

that the fuel cell capacities are not replaced with IC CHP capacities, indicating that

those are not cost effective at all in the considered scenario. The battery capacities

are reduced from 16.9 GWh to 12.8 GWh, although the photovoltaic capacity is

increasing. This implies that their operation partially complements the fuel cell

operation.

Significant shifts and cost increases are recognizable in the case that the photo-

voltaic is excluded: While the electricity purchase only increases from 71.9 TWh/a

to 80.9 TWh/a, the gas import almost doubles from 172.5 TWh/a to 285.7 TWh/a.

High gas boiler capacities compensate for the reduction of the heat pump capacities

from 60.4 to 46.9 GWth. This indicates the enforcing effect between the heat pump

and the photovoltaic, which is economically advantageous in case self-consumption

with photovoltaics is available. No battery capacities are installed, supporting the

statement that their main economic driver for installation is the photovoltaic, al-

though they are also partially used to increase the self-consumption with fuel cell

electricity.

In the case that the heat pump is excluded from the solution space, the amount

of gas increases by 113.2 TWh/a while the electricity demand gets only reduced

by 13.5 TWh/a. Further, the investment in refurbishment measures increases by

30 %, dominated by more occupancy controller and more wall insulation, and vice
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Figure 5.20: Annual cost increase for the case that certain technologies are ex-

cluded or added to the solution space in the Min Cost for 2050. The change is

once shown for the total aggregated cost and once for the single archetype build-

ings.

versa, indicating that especially cheap heat produced by the heat pumps lowers

the motivation to invest in efficiency measures. Also the fire wood supply increases

from 21.2 TWh/a to 51.44 TWh/a, since it is a cheaper fuel than fossil gas in the

scenario. Remarkable is the reduced investment in fuel cells, cutting their capacity

from 12.7 to 5.1 GWel. It illustrates that major fuel cell capacities are built to supply

the heat pumps with electricity.

The exclusion of refurbishment measures from the solution space constitutes an

increased investment in heat pumps and a reduced investment in gas boilers. This

is surprising, since an enforcing effect between the heat pump and refurbishment

measures could be expected because the refurbishment measures decrease the

required supply temperature in the building, and vice versa, increasing the effi-

ciency of heat pumps. Nevertheless, the economic effects dominate: The heat

pumps have higher investment costs than the gas boilers, while on the other hand

the energy cost for the gas supply is higher. In consequence, heat pumps are fa-

vored in the case of high heat demands and their deployment increases for the

case of no refurbishment.

The reverse effect occurs for the forced refurbishment case: Installed heat pump

capacities are reduced while gas boiler capacities increase. The overall demand for

gas and electricity is reduced since the space heat demand drops to 209.1 TWh/a,

in comparison to the 309.8 TWh/a in the Min Cost scenario and the 449 TWh/a in

the Reference scenario. Nevertheless, the demand reduction is not able to com-

pensate for the high cost of the refurbishment measures, resulting in an overall cost
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increase of 29.7 %. In particular, ventilation systems with heat recovery amount for

almost half of the efficiency measure costs. Ventilation systems do not benefit from

the refurbishment cycle since their integration cost into the building is mostly inde-

pendent of any outside renovation measures. Further noticeable is that the amount

of occupancy control systems drops: If the heat demand is reduced anyway, ad-

ditional measures by temporally reducing the inner air temperature have a minor

effect, making the occupancy controller economically unfavorable.

It is striking that the aggregated cost gain is moderate for all considered cases, ex-

cept for the forced refurbishment case. This indicates that the prediction of the total

cost is robust and not sensitive to the available technologies in the future. Though,

this robustness just accounts for an aggregated German-wide level, as illustrated in

Figure 5.20. The figure shows the cost increase in total and the distribution of the

cost increase of the single buildings. While the total cost in Germany just increases

by 3.65 % for the case that no fossil gas supply is available, one of the building

types has 22.9 % higher energy costs, while some other buildings are not affected

at all, since they were also not supplied with gas for the Min Cost scenario. Similar

effects are observed for the other sensitivity analyses: The sensitivities for single

buildings are high, but the cost of the aggregated result is robust.

Figure 5.21: GHG footprint of the Min Cost scenario and the resulting aggregated

GHG footprints if the solution space is constrained.

This robustness does not count for the resulting GHG footprints, which are illus-

trated in Figure 5.21. The smallest GHG footprints are given by the case without

fossil gas supply, reducing the GHG emission equivalent from 51.9 Mt/a in the Min

Cost scenario to 19.9 Mt/a. Also the exclusion of the fuel cell reduces the GHG

footprints, since the specific GHG footprint of the electricity generated by fuel cells

is below the GHG footprint of the electricity purchased from the grid. For the cases

without photovoltaics and without heat pumps, the GHG footprints increase up to
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81.3 Mt/a and 76.0 Mt/a since no carbon neutral electricity can be self-consumed

and no efficient heat production is available.

The exclusion and the enforcement of refurbishment measures both constitute a

small reduction of the GHG footprint to 50.8 Mt/a and 45.1 Mt/a. The first is related

to the switch to more heat pumps, while the second is related to a reduced energy

demand for space heating in general. The latter reduction is much smaller than

expected because many buildings switch to gas boilers. This indicates a potential

rebound effect that might occur in the future: The reduced demand for space heat-

ing lowers the economic incentive to invest in efficient but expensive heat supply

technologies.

The impact on the electricity grid of the different cases is further illustrated in Fig-

ure 5.22. It shows the sorted grid load for the Reference scenario, the Min Cost

scenario, and all related sensitivity analysis. The highest peak load occurs if the

gas supply is completely excluded from the solution. No significant gas boiler ca-

pacities are able to satisfy the peak heat demand, and no fuel cells can diminish

the additional the electricity load of the heat pumps: In consequence, the peak load

almost doubles to 55.9 GW in comparison to the Min Cost scenario with 32.3 GW.

The second highest demand is reached if no fuel cell is included and the peak load

increases by 14.6 GW relative to the Min Cost scenario. It shows the importance of

a decentral flexible electricity generation in order to compensate for the increased

electricity demand by the heat pumps. As to be expected, the case without heat

pumps has the lowest peak load with 25.7 GW.

Figure 5.22: Sorted grid load of the Min Cost scenario and the grid load if the

solution space is constrained.
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The amount of photovoltaic feed-in is for all cases that include photovoltaics in a

similar range. The maximal feed-in is reached with 55.4 GW for the no gas supply

case, although the single buildings have the constraint to limit the feed-in to 50 %

of their maximal capacity.

5.3.4 Sensitivity of the gas price

The chosen technologies significantly depend on the assumptions of the technol-

ogy cost and the energy prices. Therefore, this section illustrates their deployment

sensitivity by varying the gas price and optimizing the 200 archetype buildings to

minimal cost for the scenario in 2050. The oil price is varied simultaneously and

bio-methane is excluded from the solution in order to analyze the sole effect of the

chemical energy carrier price on the system designs.

The composition of the resulting annual system cost for the different gas prices are

shown in Figure 5.23.

Figure 5.23: Annual cost of the Min Cost scenario and the resulting aggregated

annual system cost for different considered gas prices.

The total annual residential energy costs are significantly reduced in comparison

to the Min Cost scenario for small gas prices. For the extreme case of a gas price

of 0.01 Euro/kWh, no refurbishment options are chosen and no significant photo-
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voltaic capacities are installed. Large fuel cell capacities of 33 GWel and gas boiler

capacities of 125 GWth cover the major parts of the electricity and heat demand.

The installed capacities of batteries almost double to 32 GWh in comparison to the

Min Cost scenario to maximize the self-consumption of the fuel cells. A similar

supply structure is observed for a gas price of 0.025 Euro/kWh while the gas cost

get a larger share at the total annual energy cost and the installed photovoltaic in-

stallations increase from 3.7 GW to 9.2 GW. This illustrates that for such a cheap

self-production of electricity, the photovoltaic is only competitive in small buildings

where the fuel cells are still too expensive, and instead a good roof orientation and

solar irradiation exists.

For the case of a gas price of 0.05 Euro/kWh, the first heat pump capacities are

getting installed with up to 28 GWth. Nevertheless, they are secondary in compar-

ison to the gas boiler capacities of 110 GWth. The price of 0.05 Euro/kWh is in a

similar range as the gas prices today and explains the small share of heat pumps at

the current heat generator market. A higher deployment of heat pumps only results

for scenarios with higher gas prices.

Thus, the system converges for gas prices from 0.075 to 0.1 Euro/kWh to the overall

system design of the Min Cost scenario with significant higher photovoltaic instal-

lations and heat pump installations.

For gas prices above, the installed fuel cell capacities are reduced while the heat

pump capacities and the photovoltaic capacities increase. The fuel cell capacities

are zero for a gas price of 0.15 Euro/kWh and no gas boiler is installed for a gas

price of 0.2 Euro/kWh. Instead, the heat pump and the photovoltaic converge to

a maximum value of 83 GWth and 163.4 GW. This shift significantly increases the

demand for electricity from the grid which doubles almost to the Min Cost scenario

for high gas prices since no more fuel cells are used for self-consumption, as shown

in detail in Appendix C.4. Further, small pellet boiler capacities of 4 GWth are

installed in large buildings as peak boiler.

The resulting aggregated GHG footprints are shown in Table 5.11 for the cost mini-

mal system designs depending on the different gas prices.

Table 5.11: Aggregated GHG footprint [Mt/a] of the residential building stock in for

the Reference and the Min Cost scenario and for the cases with a varying gas.

Refer- Min Gas price [Euro-ct/kWh]

ence Cost 1 2.5 5 7.5 10 12.5 15 20

GHG [Mt/a] 202 52 162 150 105 78 46 25 21 20
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A clear trend of reduced GHG emissions at higher gas prices is observed since

the system switches more to renewable energies and to grid electricity which has

a lower GHG footprint than the self-generated electricity of the fuel cells in the

scenario for 2050. Since the the Min Cost scenario just achieves a GHG reduction

of 75% to the Reference scenario, the next section analyzes further pathways to

reduce GHG emissions.

5.3.5 Zero GHG emissions

Since the Min Cost scenario just reached a reduction of the residential GHG foot-

print to 51.9 Mt/a, this section introduces the further system evolution that would be

required to reach a carbon neutral building stock, i.e. a GHG footprint of zero.

Therefore, the Min Cost scenario in the previous Section 5.3.1 is extended with

a second objective: The minimization of the GHG footprint. It is done by modify-

ing the single objective function, introduced in Section 3.3.1, to a multi-objective

function that includes the cost and the GHG footprint. A simple linear scalariza-

tion approach is used that weights the different objectives. Here, the costs are

always weighted with one while the GHG emissions start with a weight of zero and

are higher weighted iteratively in order to reach the goal of a GHG neutral building

stock. The chosen buildings and the cost assumptions stay the same as in the

Min Cost scenario from Section 5.3. The goal is to define the cost minimal supply

structure to reach a GHG neutral building stock.

Thereby, different pathways towards reducing the GHG footprint are imaginable.

The following three target cases are introduced:

1. The Self-sufficiency case is defined fully equivalent to the Min Cost scenario.

The imported electricity from the grid has a GHG footprint of 122 g/kWh and

only marginal incentives are given to feed electricity into the grid. In con-

sequence, the only option to further reduce the GHG footprint are efficiency

measures or self-supply with renewable energy.

2. The Net zero emission case is following the goal of the European Union of

net Zero Emission Buildings. The imported electricity also still has a GHG

footprint of 122 g/kWh as in the Min Cost case, but the feed-in has equivalent

negative emissions of 122 g/kWh. In consequence, the building stock has an

incentive to generate more on-site electricity and can become GHG neutral

by compensating for its demand via an electricity feed-in.

3. The Renewable grid case assumes that the central electricity supply will be-

come 100 % renewable, constituting a GHG footprint of 0 g/kWh. In conse-
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quence, the buildings only have to switch completely from fossil resources to

a full electrification or more expensive renewable fuels.

The pathways to reach the three cases of GHG neutral building stock are introduced

for an aggregated perspective in Section 5.3.5. Section 5.3.5 discusses then the

final cases in between as well as their impact on the electricity grid.

Pathways to reach GHG neutrality

The objective of minimizing the GHG emissions is achieved by weighting them in

the objective function. The annual costs are kept with a constant weighting of one,

while the GHG emissions are weighted by a price, distorting the cost optimal sys-

tems towards a more GHG friendly solution. A strict constraint to the GHG emis-

sions is avoided since the results are determined by independent optimizations of

different buildings. Thereby, different buildings have different GHG avoidance costs.

In order to reach an aggregated efficient pathway, the different GHG avoidance

measures are globally accessed by increasing the relative GHG prices.

The results for the annual cost and the resulting GHG emissions are shown in

Figure 5.24.

Figure 5.24: Pareto front between residential costs and GHG emissions for the

three pathways to reach a GHG neutral building stock for the Min Cost scenario in

2050. The gray numbers define the weighting of the GHG emissions in Euro/kg.

All paths start at the same annual cost level of 65 Bil. Euro/a, which is equivalent
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to the cost of the Min Cost. Also the system design is the same between the three

cases and the Min Cost for a weighting of the GHG emissions by zero. Neverthe-

less, the GHG emissions are at different levels, since they are differently assumed

between the different pathways: The Self-sufficiency pathway starts with the high-

est emissions of 51.9 Mt/a, fully equivalent to the Min Cost scenario, while the Net

zero emission pathway starts with reduced emissions of 48.9 Mt/a due to a com-

pensation by the small photovoltaic feed-in. The Renewable grid pathway starts

with the smallest amount of GHG emissions of 43.1 Mt/a, which is still not sufficient

to reach a reduction of 80 % of the GHG emissions to the Reference scenario.

Based on those solutions as a starting point, the weighting of the GHG emissions

is iteratively increased in the objective function. In consequence, the systems get

more expensive since they are pulled out of the cost optimum towards a more GHG

friendly solution. Noteworthy is that the resulting increase of the annual cost in

Figure 5.24 is just related to the cost differences inside the systems and does not

include the weighting factor of the GHG emissions themselves.

All three pathways are able to reach GHG neutral systems that are highlighted with

gray circles, although different GHG weightings are required. For the Renewable

grid pathway, only a weighting of 0.2 Euro/kg is required to reach GHG neutrality

with a moderate cost increase to 68 billion Euro per year. The Net zero emission

pathway slightly overshoots the GHG neutrality goal with a weighting of 0.4 Euro/kg

and a cost increase to 73 billion Euro per year. It is the only pathway that is able

to have negative GHG emissions by having a higher electricity grid feed-in than

electricity demand. The most expensive pathway is the Self-sufficiency path that

needs a GHG weighting of 2.0 Euro/kg to reach GHG neutrality and results in costs

of 79 billion Euro per year.

The resulting annual cost compositions for the different pathways are illustrated

in Figure 5.25. All pathways start with the same system design and take similar

adaptions to reduce the GHG emissions until a GHG weighting of 0.2 Euro/kg:

The amount of purchased fossil gas is reduced together with the capacities of fuel

cells and gas boilers, and the capacities of heat pumps and photovoltaics increase.

Additionally, pellet boilers are built that combust 7.5 to 10.2 TWh/a pellets.

Differences exist at 0.2 Euro/kg in the battery capacities: While they are extended

in the Self-sufficiency and the Net zero emission pathways to 27.8 and 23.8 GWh,

they are reduced to 7.76 GWh in the Renewable grid case. In the latter case, the

increased weighting of the GHG emissions does not affect the electricity imported.

In consequence, no increased incentive is given to self-consume the photovoltaic

electricity. Instead, the flexibility provided by the increasing amount of heat pumps

compensates for the demand for batteries in the Renewable grid path, reducing the

economic value of batteries.
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Figure 5.25: Composition of the annual cost of the three GHG reduction pathways

of the Min Cost scenario with different GHG weighting costs.

Further, for a GHG weighting of 0.2 Euro/kg all three pathways include gas boil-

ers that are operated with a bio-methane between 10.7 and 13.6 TWh/a. Those

are primarily integrated in small efficient buildings where a heat pump investment

would not be cost optimal. For the Renewable grid case, no self-supply with fuel

cells remains since the energy costs of the fossil gas and bio-methane exceed the

electricity import price. This is different for the Self-sufficiency and the Net zero

emission scenario where the GHG footprint of the electricity purchased from the

grid is avoided and small fuel cell capacities of 1.2 to 1.3 GW are built, which con-

sume between 12.2 and 15.7 TWh/a bio-methane.

While the Renewable grid pathway has reached GHG neutrality for a weighting of

0.2 Euro/kg, it needs to be further increased for the other two scenarios: The Net

zero emission pathway reaches GHG neutrality with 0.4 Euro/kg. Therefore, the
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photovoltaic capacities increase further up to 295.2 GW and the renewable oper-

ated fuel cells reach an electric capacity of 7.7 GW. 116.7 TWh/a of electricity are

fed-in to the grid by the photovoltaic, while only a residual demand of 83.8 TWh/a

is purchased from the grid. 31.7 TWh/a are self-consumed from the fuel cell while

125.4 TWh/a are self-consumed from the photovoltaic. This highlights the accessi-

ble potential for photovoltaic self-consumption.

The Self-sufficiency pathway needs even higher incentives up to 2.0 Euro/kg to

reach GHG neutrality. Then, the buildings do not purchase any fossil resources or

electricity from the grid at all. Instead, high fuel cell capacities up to 34.5 GW

are built that are operated with bio-methane to self-supply the buildings with

101.4 TWh/a of electricity. This goes along with a massive capacity of 145.1 GWh

of batteries and 180.47 GW of photovoltaics. However, the overall cost of the sys-

tem increases due to the expensive self-generation systems, and a further rollout

of refurbishment measures in order to reduce the electricity demand of the heat

pumps is not happening. The space heat demand still amounts to 297.7 TWh/a

from which 243.9 TWh/a are provided by the heat pumps and the rest by the fuel

cell, electric heater and fireplaces.

In all three GHG neutral cases, no major additional refurbishment measures are

chosen, besides the ones that are already integrated in the Min Cost scenario.

For the Renewable grid case the demand for space heating even increases from

309.8 TWh/a to 320.8 TWh/a. The increasing share of heat pumps reduces the heat

reduction potential of the occupancy controllers wherefore less are implemented

and a higher heat demand results, as explained in Section5.3.3. For the other two

cases, the space heat demand is reduced to 303 TWh/a and 297 TWh/a. Nev-

ertheless, the potential to reduce the space heat demand is by far not exploited,

indicating that the majority of measures on the supply side are more cost effective.

Furthermore, it shows that the supply side is highly sensitive to the requirements

and regulation definitions, while the demand side is more or less robust to extrinsic

conditions due to its high costs.

Grid impact of GHG neutrality

While the previous section introduced different pathways to GHG neutrality, the

following section describes the different grid impact of the final GHG neutral cases.

The differences in the supply structure of the pathways also constitute the differ-

ences of the grid load, as visualized in Figure 5.26. The Self-sufficiency scenario

has for most of the hours no grid load at all, and just feeds in photovoltaic electricity

with a peak load up to 58.3 GW in the summer. The amount is slightly higher than
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for the Min Cost case.

Figure 5.26: Sorted grid load of the aggregated residential building stock for the

Min Cost scenario and the three GHG neutral cases.

The Net zero emission case has with 39.7 GW a higher peak load than the Min

Cost scenario with 32.3 GW, due to a reduced fuel cell capacity and an increased

heat pump capacity. Its peak load even exceeds the peak load of 36.4 GW of

the Reference scenario. Nevertheless, its feed-in is order of magnitudes higher

than the Min Cost scenario and peaks with 127.9 GW. Such a high capacity would

expectantly exceed the grid limitations, although an integrated curtailment rate of

50% of the installed photovoltaic capacity is already included for each building.

Further regulations or feed-in tariff designs designs would be required to flatten the

profile and reduce the peak feed-in.

The highest peak load results from the Renewable grid scenario with 56.4 GW,

which is 57% higher than the maximum Reference load. The only self-generation

is given by the photovoltaic and is not able to reduce the peak demand of the

heat pumps in the winter days. It indicates the impact of full electrification of the

residential heat sector when no self-generation can compensate for the increasing

demand.

Those changes of the peak load spatially vary between the different scenarios, as

seen in Figure 5.27.

The figure shows the change of the three Zero GHG cases in comparison to the

Reference scenario. While the peak load gets reduced by 100 % for the Self-

sufficiency case for the rural regions as well as for the urban regions, differences

occur for the two other scenarios: For the Net zero emission scenario an increase of

the peak load in the Rural regions up to 100 % occurs, which is in a similar trend as
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Figure 5.27: Change of the peak electricity demand from the different Zero GHG

cases to the Reference scenario. 0 refers to no change, while positive values state

an increase and negative values a reduction.

in the Min Cost scenario: The heat pumps demand electricity when no photovoltaic

generation or other self-generation occurs and increase the total grid load. This

effect is smaller in the urban regions since the small bio-methane operated fuel cell

capacities reduce the heat pump load. For the case of the Renewable grid, the peak

load even increases above 140 % of the Reference load. The difference between

rural and urban regions is not that significant anymore, since no self-generation by

fuel cells is built in the cities. Nevertheless, the increase of the electricity demand is

still higher in the rural regions because there the specific demand for space heating

is higher.

The change of the demand, basically the positive residual load, is visualized in

Figure 5.28.

Again, the Self-sufficiency case obviously has no significant demand. For the other

two cases, the change of the demands has a similar trend as the change of the

peak demand. Nevertheless, the scales are different: The demand in the Net zero

emission scenario reduces mainly in the urban areas, while in some rural areas an

increase between 20 and 30 % is observed. The self-consumption of photovoltaics

is not able to compensate for the increasing electricity demand of the heat pumps.

This effect is enhanced in the Renewable grid scenario where the demand even

doubles in some rural regions.
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Figure 5.28: Change of the electricity demand from the different Zero GHG cases

to the Reference scenario. 0 refers to no change, while positive values state an

increase and negative values a reduction.
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Figure 5.29: Feed-in of the different Zero GHG cases in ratio to the electricity

demand of the Reference scenario. Above 100 percent refers to a higher cumulative

feed-in of electricity than the region originally had as electricity demand.
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Significant differences are observed for the comparison of the photovoltaic feed-in,

shown in Figure 5.29.

The Self-sufficiency case and the Renewable grid case are similar: No feed-in

exists in the urban areas where all photovoltaic generation is self-consumed. In

the rural areas up to 50 % of the original electricity demands are fed-in to the grid,

mainly constituted by the bigger roof areas with a higher potential of photovoltaic

installations. This effect magnifies for the Net zero emission case: The rural areas

are able to feed-in over 150 % of the Reference electricity load, indicating the huge

photovoltaic potential that can be exploited. Nevertheless, for this case the urban

areas are not self-consuming all photovoltaic generation anymore, wherefore they

are able to feed-in around 30 % of the Reference electricity demand.
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5.4 Discussion

While the previous sections introduced the results of the scenarios, they are com-

pared and discussed with the related literature in the following section. First, Sec-

tion 5.4.1 compares the absolute results between each other and evaluates them in

terms of global feasibility. Afterwards, they are compared to the results reported in

the literature in Section 5.4.2. Last, Section 5.4.3 analyzes the results in the context

of the novel modeling approach.

5.4.1 Evaluation of the scenario results

A comparison of the resulting final energy demand of the considered scenarios is

shown in Figure 5.30 and Table 5.12 summarizes the key results.

The Min Cost scenario is able to achieve a reduction of the final energy demand

from 679.6 TWh/a to 355.3 TWh/a or 47.8 %, excluding the self-consumption with

photovoltaics and the environmental heat. This reduction is on one hand achieved

by saving 31.2 % of space heating in comparison to the Reference scenario. The

other reductions result from a more efficient usage of the energy carriers in the sup-

ply system, e.g. the combination of fuel cells together with heat pumps can supply

space heat with a much higher efficiency than the simple usage of combustion boil-

ers. The second driver is the high self-consumption of photovoltaic electricity of

89.7 TWh/a, of which a significant amount is used for Power-to-Heat applications.

Similar efficiency potentials are used in the Zero GHG cases, nevertheless the

energy carriers are changing.

The Self-sufficiency scenario switches completely to bio-methane with 202.4

TWh/a to operate fuel cells for self-consumption. It is the most expensive zero

GHG case and also the most challenging to deploy, since the potential for biogas

is limited. Although 505.3 TWh/a of domestic biomass potential are predicted in

Germany for 2050 [FNR, 2016], this would further need to be fermented, purified

and fed-in to the gas grid. Therefore, also the bio-methane potential that could be

fed-in to the grid is just predicted to 109.2 TWh/a for 2030 [DVGW, 2014]. Addi-

tionally, cross-sectoral models [IWES, 2015] conclude that the usage of chemical

energy carriers for space heating should be minimized since its usage is more cru-

cial in the industry and mobility sectors. Also, the replacement of bio-methane with

hydrogen is challenging since it would further increase the residential supply cost

because the hydrogen price is expected to be with 16.5 ct/kWh [Robinius, 2015]

above the 13.8 ct/kWh assumed for the bio-methane, even without tax. In summary,
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Figure 5.30: Comparison of the final energy demand of the different considered

scenarios in this work.

the self-sufficient supply systems in this zero GHG case are only independent from

the electricity grid but rely further on significant fuel consumption. Therefore, they

have a limited value from a central systems perspective.

Instead an interaction with the grid should be encouraged, as in the Net zero emis-

sion case with a moderate cost increase to the Min Cost scenario. Thereby, a

mixture of 83.7 TWh/a of electricity, 73.6 TWh/a of bio-methane and 25.1 TWh/a

of solid biomass are imported while 116.7 TWh/a of electricity are fed-in to the

grid. The bio-methane is also used in the fuel cells to generate electricity for self-

consumption primarily in the winter hours. Therefore, they can compensate for the

additional load of the heat pumps and no significant increase of the aggregated

residential peak load results. Nevertheless, the 7.7 GWel fuel cell co-generation

units are mainly installed in the urban areas since they are too expensive for the

low energy densities in the rural areas. In consequence, the peak load is increas-

ing in the winter in the rural areas up by 140 % in comparison to the Reference

load. Therefore, future analyses would need to consider the grid capabilities to

balance the micro-generation in the urban areas and the increased demand in the

rural areas.

The Renewable grid case switches almost completely to the sole import of elec-

tricity and results in a demand of 148 TWh/a, which is even above the demand

of the Reference scenario. It has no incentive to self-generate electricity with co-

generation in winter, wherefore the load is also increasing for the aggregated na-
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Table 5.12: Comparison of the key results of the Min Cost scenario in 2050 and

the three case studies to reach zero GHG emissions.

Min Self Net zero Renewable
Cost sufficiency emission grid

Annual cost [Bil./a] 64.8 78.6 71.4 67.2

Peak-load [GW] 32.2 1.8 39.74 56.4

Space heat [TWh/a] 309.8 297.7 303.0 320.8

Grid demand [TWh/a] 71.9 0.5 83.7 148.2
Fuel demand [TWh/a] 193.6 221.5 98.6 40.1

Feed-in [TWh/a] 24.1 23.3 116.7 34.0

Batteries [GWh] 16.9 145.1 44.3 7.0
Fuel cells [GWel] 12.7 34.5 7.7 0.0

Photovoltaic [GWel] 133.4 180.5 295.5 160.9
Heat pumps [GWth] 60.4 68.0 78.5 85.1

tionwide perspective due to a peak demand of the heat pumps by 26.1 GWel. Al-

though it is the most cost effective zero GHG case, it has the highest impact on

the grid infrastructure and does not compensate for its high electricity demand by a

feed-in.

5.4.2 Comparison of the scenario results to the literature

The following section discusses the scenario results for 2050 in comparison to the

results in the literature. The validation of the model is found in Section 5.2.

Heat pumps

Significant for the change of the electricity peak load is the high diffusion of the

heat pumps that constitute an additional load of 18 to 26 GWel operated with above

3500 full load hours in winter.

For comparison, the FORECAST model predicts only a total electrical heat pump

load of around 5 GW for all sectors in winter 2050 [Boßmann and Staffell, 2015]

plus a significant reduction for other electric heating applications. Such low de-

mands for electrically generated heat can only be achieved if the majority of the
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residential heat is still supplied with chemical energy carriers, and if high refurbish-

ment rates are already considered. Similarly, the study Energieeffizienzstrategie

Gebäude [BMWi, 2015] assumes a limited potential for the heat pumps in 2050

with 58 to 100 TWh/a of environmental heat that can be used. This is exceeded

by all scenarios in this work, which use between 170.4 TWh/a and 228.7 TWh/a of

environmental heat. The limited potential in the Energieeffizienzstrategie Gebäude

study [BMWi, 2015] is justified by the slow market development of heat pumps in re-

cent years. Their share in new constructions has stagnated since 2010 [DESTATIS,

2014] while above 50 % of the new buildings are still built with gas boilers. Nev-

ertheless, these limitations are not constituted by limited production capacities of

the heat pumps, instead the current levy structure of the energy prices benefits gas

boilers [Lindberg et al., 2016a; Schütz et al., 2017b].

The other extreme is defined by Fehrenbach et al. [2014]: They apply the TIMES

model to estimate the future load management potential of the residential heating

sector and result in 67 GWel of heat pumps for 2050. Those over-capacities are not

installed in this work, since the heat pumps are too expensive and other peak boiler

technologies are installed to avoid too high costs. Further, no extrinsic incentive

is considered to install higher capacities for additional flexibility. Nevertheless, the

cross-sectoral optimization of Germany IWES [2015] also concludes that 39 GW of

heat pumps are required in 2050 to reach an overall GHG reduction in Germany of

83% from 1990.

In summary, the resulting deployment of heat pumps aligns between the results’

cross-sectoral optimization models as upper bound and the results of GHG reduc-

tion strategies for the sole building stock as lower bound. Nevertheless, the com-

parison also shows limitations of the model since replacement rates of the heating

system are currently not considered in the model and should be extended. The

technical lifetime of heating systems can be assumed on average to be 25 years

[BMWi, 2018]. To reach sufficient deployment rates of heat pumps in 2050, e.g.

Diefenbach et al. [2016] concluded that by 2025 at the latest, no new gas or oil

boilers can be allowed to be installed. Therefore, either the gas price has to sig-

nificantly increase, or the combustion of fossil fuels for space heating needs to be

regulated and finally prohibited.

Solar energy

Most studies focusing only on the heat supply of buildings [BMWi, 2015; Diefenbach

et al., 2016; Beuth, 2017; BMWi, 2018] consider a significant share of solar thermal

collectors for the space heat supply and hot water supply in 2050.
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In this work, no significant share of solar thermal rooftop collectors is installed. The

reason is that solar thermal is not an economically competitive option from a single

building perspective, which is already observed today [Evins, 2015; Lindberg et al.,

2016a; Schütz et al., 2017b; Wu et al., 2017]. Nevertheless, rooftop solar thermal

installations are also avoided from a cross-sectoral perspective in 2050 while only

large-scale solar thermal for district heating is favored [IWES, 2015].

Instead, the rooftops are used for photovoltaic capacities between 133.4 and 295.2

GW, depending on the scenarios. The capacities are below the technical potential

for residential rooftop photovoltaics in Germany of 641 GWp for 2050, which was

concluded by Mainzer et al. [2014]. Excluding the Net zero emission scenario, the

only motivation in the scenarios for photovoltaic deployment is self-consumption.

Already the Min Cost scenario results in 89.7 TWh/a of photovoltaic electricity us-

age inside the building, which indicates the high potential that photovoltaic self-

consumption can have to reduce the final energy demand. This self-consumption

can be achieved by a combination of batteries, heat storage systems and the ther-

mal storage capacities of the buildings. It illustrates further the advantage of pho-

tovoltaics in comparison to solar thermal: The electricity can be used in cheap

electric heaters for high temperature hot water demand, with high efficiency in heat

pumps for low temperature space heat, and for the supply of conventional electri-

cal appliances. Although the self-consumption values seem high, Prognos [2016]

concludes for single- and two-family buildings plus agriculture a potential of 38.7

TWh/a for photovoltaic self-consumption in 2035, where half of the energy is used

for new heat applications. The value is in a similar magnitude as the predictions

of the Min Cost scenario for 2050, where the single- and two-family house have

53.0 TWh/a of photovoltaic self-consumption. Nevertheless, this work additionally

shows the high self-consumption potentials that could be achieved in urban areas

with multi-family houses.

Fuel cells

In this work, the load increase by the heat pump is partially compensated with dis-

tributed fuel cell installations between 7 to 12 GWel that are used for co-generation,

exhibiting around 5000 full load hours. The values align well with Jungbluth [2007]

who concludes a potential up to 12 GWel for fuel cells in the year 2050 with the

same amount of full load hours. The general installation of co-generation units

in 2050 is supported by the majority of the reviewed studies [IWES, 2015; BMWi,

2015; Diefenbach et al., 2016; UBA, 2017b] since it states an efficient and flexible

usage of the chemical energy carriers.

In the scenario of this work, fuel cells are more cost effective than internal combus-
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tion engines, although the investment costs of the fuel cells are significantly higher

for large scales. Nevertheless, the smaller electrical efficiency and the higher main-

tenance cost of the combustion CHP make them noncompetitive in the considered

scenario for 2050.

The placement of fuel cells results in mainly multi-family houses wherefore they are

only installed in urban areas. This is reasonable, since also spatially resolved en-

ergy system models conclude that flexible generation should be generally deployed

close to demand centers [Zeyringer et al., 2018]. Nevertheless, the rural areas are

in consequence critical to the grid, since they cannot compensate for the heat pump

demand.

Energy savings

The used energy saving potential due to the construction of new buildings and

refurbishment measures constituted a reduction of the space heat demand between

28.5 and 33.7 % in the Reference scenario. Although higher saving potentials of up

to 53.5 % are illustrated in the sensitivity analysis and could have been achieved by

higher refurbishment rates or higher refurbishment depth in this work, they are not

exploited in the cost minimization due to their high costs.

The conclusion that the assessment of further energy savings is expensive is sup-

ported by the comparison of the scenarios in the Energieeffizienzstrategie Gebäude

[BMWi, 2015]: Their Energieffizienz scenario results in final energy demand sav-

ings of 54 % and is above 30 % more expensive than the EE-Szenario, which has

savings of 36 %. Also the unconstrained optimization of the cross-sectoral model

by UBA [2017b] concludes that only the final energy demand savings of 24% from

2008 until 2050 are cost optimal.

Finally, the sensitivity analysis in Section 5.3.3 showed that higher refurbishment

rates are not only expensive but do not necessarily have a significant impact on the

GHG emissions: the resulting smaller heat demand can be supplied with cheap, yet

inefficient heat generators, such as fossil fuel boilers, more cost effectively. Nev-

ertheless, their high specific emissions deplete major parts of the GHG reduction

potentials of the energy saving measures.
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Summary

All in all, the deployed technology capacities and chosen efficiency measures align

well with the results reported in the literature for the scenario in 2050. Therefore,

also the spatial-temporal changes of the grid load can be concluded to be valid.

5.4.3 Discussion of the model approach

The Reference scenario shows that the model aligns with the final energy demand

values reported by the AGEB [2017], provided that a sufficient number of archetype

buildings is assumed. This is remarkable since a full bottom-up approach was taken

that was not thoroughly fitted to the aggregated values. Nevertheless, minor devi-

ations remain for rarely occurring building attributes, partially due to a lack of data

and partially due to the aggregation to too few archetype buildings. Therefore, the

demand for secondary energy carriers such as pellet boilers or solar thermal is un-

derestimated in the Reference scenario, but also compensated for by the demand

for other energy carriers. While this effect is on an aggregated national perspec-

tive small, it could be more significant on a disaggregated municipality perspective,

although no sufficient data was found to validate it.

The analysis of the spatial impact of different weather years further shows the rel-

evance of also modeling the nationwide energy performance based on spatially

distributed weather time series. While it is common to include the impact of model-

ing different weather years, their spatial impact is neglected in energy performance

models [Mata et al., 2014; McKenna et al., 2013; BMWi, 2015; IWES, 2015; UBA,

2017b]. Nevertheless, the example of the energy performance in the year 2010

illustrates their relevance: While 2010 was in general a cold year with a high na-

tionwide energy demand, it impacted north-west Germany by an increase of the

energy demand of up to 17 % above the average demand between 2010 and 2015,

while for south-east Germany the increase amounted to only 11 %. Vice versa, an

error above 6 % can be induced for an aggregated final energy demand prediction

depending on the chosen location of the weather data. For temporally resolved

results, even higher deviations are expected.

The optimization of the future residential supply structure reveals at the same time

a strength and drawback of the approach: The sole financial agent decision making

is known to perform well in rate of adoption and cumulative adoption but under-

estimates social and attitudinal components influencing the technology adoption

[Robinson and Rai, 2015]. Therefore, only a few economically dominant technolo-

gies are chosen in the Min Cost case, although even a higher diversity would exist
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in reality due to individually varying information levels. As a case in point, pellet

boilers were down-selected, although those are considered in different scenarios in

the literature [IWES, 2015; BMWi, 2015]. This dominance is related to the scenario,

and a consideration of different biomass prices could change this. Nevertheless,

in reality an adoption of pellets would also be expected without being economi-

cally competitive. Such non-cost optimal adoption behaviors are better included in

simple adoption models such as Invert tool [Kranzl et al., 2013; Müller, 2015] that

includes a statistical randomness in the adoption process, but neglects, e.g., the

temporal operation. Nevertheless, the information basis for investment decisions

is improving and wherefore the assumption of future cost optimal investment stays

reasonable.

Still, a diversity of chosen supply technologies and refurbishment measures re-

mains due to the diversity of building types. Different technologies are cost optimal

for different building types, wherefore no single dominant system configuration ex-

ists in the scenarios. This makes the aggregated model robust to extrinsic changes,

as shown in Section 5.3.3. E.g., the lack of the supply of an energy carrier can sig-

nificantly impact a single building because it was previously supplied by it. On the

other hand, a second building may have a completely different supply structure with

the consequence that it is not affected at all. Further, this diversity of the building

types also results in a spatial diversity of the supply technology adoption. This

different adoption has a spatially varying impact on the grid load, confirming the as-

sumption that the load will not change uniformly. This further justifies the spatially

distributed approach of the bottom-up model that is able to predict those different

changes.

Another advantage of the temporally resolved bottom-up approach is that capacities

of the installed technologies can be predicted together with their related costs. Ap-

proaches relying on energy balances [BMWi, 2015; Diefenbach et al., 2016; BMWi,

2018] or on an aggregated central load [IWES, 2015; UBA, 2017b] are either not

able to predict them, or underestimate them. The results of the bottom-up model in

this work show that the installed technology capacities exceed the aggregated peak

loads of the technologies, since the peak loads are occurring in different times in

different buildings. Therefore, aggregated single node or single region models tend

to underestimate the costs of the energy supply. Nevertheless, this effect applies

mainly for cheap peak boiler technologies while expensive technologies are de-

signed to have many full load hours.

The spatial disaggregated analysis also revealed limitations of the model: In the

Min Cost scenario, the net load increase in the rural areas of Rhineland-Palatinate

and the Saarland exceeds the load increase in the other rural areas, although no

clear structural difference exists in comparison to the other regions. The reason

for this deviation is that 200 archetype buildings are still not sufficient to model the
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stochastic balancing effects of different building types and different optimal invest-

ment decisions on a municipality scale. If there is a single building significantly

representing different municipalities, and this building is sensitive to the scenario,

it overly impacts the change of the supply structure in the municipality, although a

more diverse building stock would not be as sensitive. Higher numbers of archetype

buildings can decrease this effect, as shown in Appendix B.3 and Appendix C.2.

Lastly, the good alignment with the reported final energy demand values of today

makes the model further suitable to develop transformation paths of the building

stock until the year 2050. E.g. additional projected supply years in 2020, 2030

and 2040 could be modeled. Such an approach could better consider the different

lifetimes of the technologies and respect the inertia in the adoption process of the

building owners. As seen in the discussion in Section 5.4.2, also adaptions of

the current regulations could be better derived since their impact today can be

extrapolated into the future.

5.5 Summary

This chapter introduced different scenarios for the residential energy supply, ap-

plied them to the models introduced in Chapter 3 and Chapter 4 and analyzed the

resulting systems and their related grid impact.

Therefore, first all techno-economic parameters were introduced in Section 5.1

mainly based on the study Energieeffizienzstrategie Gebäude [BMWi, 2015] and

technology specific analysis in Appendix A.3. Two scenario frames were derived:

The year 2015 is used for validation and the year 2050 is defined for the future

scenarios.

The first application was shown in Section 5.2 where the model is validated to the

aggregated energy demand values provided by the AGEB [2017]. It was observed

that a minimal number of archetype buildings is required to respect the diversity of

the residential energy supply, while 200 archetype buildings were concluded to be

sufficient for this work. The aggregated final energy demand could be met by the

model with deviations below 2 %, depending on the weather year.

Afterwards, Section 5.3 introduced a cost minimal residential energy supply for the

year 2050. It showed that the dominant supply technologies are photovoltaics, heat

pumps and co-generation units in the form of fuel cells. Nevertheless, their de-

ployment differs between rural and urban areas, significantly impacting the regional

load. The co-generation units are mainly cost effective in urban areas, where they
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are able to compensate for the increasing electricity demand of the heat pumps.

This does not count for the rural areas where the photovoltaic generation and heat

pump demand temporally disjoin, leading to an increased peak load. Since the sole

cost minimization is not able to achieve sufficient GHG savings, three pathways to a

GHG neutral residential building stock were introduced. Thereby, the pathway with

net zero emissions was concluded to be the best compromise between grid impact

and cost increase.

The chapter closed with a discussion in Section 5.4.1 and compared the scenario

results to the results in the literature.
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Chapter 6

Summary

The following chapter recapitulates the main methodological contributions of this

thesis, summarizes the scenario results and outlines the central conclusions.

6.1 Scope and objective

Installation of distributed energy resources and electrification of the heat supply are

promising options to reduce the greenhouse gas emissions of residential buildings.

Nevertheless, the magnitude of their deployment and the resulting impact of their

operation on the electricity grid infrastructure are uncertain.

Although many studies exist that determine technology and efficiency driven green-

house gas reduction strategies for the residential building stock, these studies ei-

ther rely on energy balances without a temporal resolution or do not consider single

buildings. Therefore, they are not able to predict the resulting grid load or to derive

the potential for self-sufficient energy supply of the residential building stock.

Consequently, this thesis closes this gap and introduces a new approach that pre-

dicts bottom-up the cost optimal technology adoption in residential buildings and

derives the spatially and temporally resolved grid load.
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6.2 Methodology and contributions

First, a single building optimization model is developed that determines the de-

sign and operation of the energy supply for single residential buildings. Thereby, a

stochastic occupancy simulation based on a Markov chain defines the required de-

mands for appliance electricity, hot water and thermal comfort with a high temporal

resolution. It is able to respect the high fluctuation of single household profiles and

their dampening for larger aggregations of households, which is significant for the

prediction of self-consumption rates and the economic evaluation of supply tech-

nologies. Those demands need to be satisfied. Therefore, a generic optimization

model is developed that designs and operates the residential energy supply system,

e.g. photovoltaics, batteries, heat pumps etc., together with potential refurbishment

measures of the building, e.g. additional roof insulations. It is implemented as a

Mixed-Integer Linear Program that can be parametrized by all building types de-

fined by the EPISCOPE database for the weather years 2010 until 2015 in the

whole of Europe.

Nevertheless, the complexity of the model and the diversity of decision variables

make it computationally challenging. Therefore, time series aggregation methods

are introduced to reduce the temporal dimension of the model. They are promising,

but novel state descriptions are required and developed in this thesis to sufficiently

account for seasonal storage options. Further, a two-level optimization approach

is proposed to separate the binary structural design decisions, and the continuous

scale and operation related decisions. Such, it is possible to design energy supply

systems with a high accuracy and a lean computational load, which is crucial since

it is applied to a diversity of building types.

In order to determine the design of whole building stocks, a novel algorithm for the

aggregation of spatially distributed archetype buildings based on Census data

is developed. Thereby, the relevant attributes to describe an archetype building are

discussed and introduced for Germany on the municipality level. Due to the struc-

ture of the data, no standard cluster approach is applicable to derive archetype

buildings. Instead, a novel algorithm is proposed which divides the overall prob-

lem into two mathematical programs that are iteratively solved. It is applied to the

German residential data for a varying number of archetype buildings, while the esti-

mation errors to the different building statistics in the municipalities is reduced with

an increasing number of archetype buildings. It is shown that already 25 buildings

are enough to meet the aggregated building attribute distributions for Germany by

a fit of 90.4 %. Nevertheless, 200 archetype buildings are concluded to sufficiently

respect the diversity of the buildings in the municipalities while meeting the ag-

gregated distributions by 98.2 %. Still, the number of archetypes can be flexibly

adjusted depending on the required accuracy and the available computational re-
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sources.

6.3 Scenario results

The single building model is applied to the spatially resolved archetype building

stock of Germany. It is shown in the Reference scenario that the energy demand

predictions of the bottom-up model align with energy demand statistics for Ger-

many for the years 2010 until 2015 with 200 archetype buildings. Less archetype

buildings are not able to represent the diversity of the residential energy supply

structure in detail. Further, the variation of the weather years revealed that the ex-

treme weather years are spatially differing: e.g., 2010 was in general a cold year

with a high nationwide energy demand but it impacted the north-west by a total

increase of 17 % above the average final energy demand, while for south-east Ger-

many the increase amounted only to 11 %. This highlights the potential of the

developed model to predict regional extreme scenarios that are essential for the

design of a supply infrastructure.

To predict the change of the energy supply and its related grid load, the model

is applied to a scenario frame for the year 2050. Thereby, refurbishment cycles

and new constructions of buildings are integrated. All measures for energy savings

or changes of the residential energy supply technologies, e.g. fuel cells or pellet

boilers, are holistically optimized with the objective to minimize the energy cost

in 2050 from the perspective of the single residential building owner, referred to as

Min Cost scenario.

The dominant technologies chosen for the residential energy supply in the Min

Cost scenario are photovoltaics, heat pumps and co-generation units in the form

of fuel cells. The peak heat loads are covered by additional technologies such

as gas boilers, fireplaces or electric heaters. Sole gas boilers are cost optimal

for small refurbished buildings due to their low investment costs and because the

considered high energy prices are secondary for small heat demands. The flexi-

ble co-generation units are mainly cost effective in large multi-family houses where

they can reach between 4000 to 5500 full load hours. Smaller buildings have too

fluctuative electricity demand profiles and too low cumulative demands to reach a

sufficient load that justifies the economy of scale of the co-generation units. Photo-

voltaics are chosen in all buildings such that almost 90 TWh of photovoltaic electric-

ity is self-consumed per year. It is mainly used for hot water generation in summer,

in small battery capacities for electrical appliance demand in the evening hours,

or in the transient months to operate the heat pumps for space heating. The so-

lar thermal collectors are not competitive in the scenario, especially since they do
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not provide additional value besides the generation of hot water in comparison to

the photovoltaics. Batteries are only minorly deployed with a total capacity of 16.9

GWh since the flexibility of the electric heat generators is already able to access

large parts of the self-consumption potential.

The total annual electricity grid load is reduced by 56 % today due to the self-

consumption while the aggregated peak load of the residential building sector just

decreases by 11 %. Nevertheless, this differs regionally: Peak loads in the rural

areas increase up to 100 % since photovoltaic generation and heat pump demand

seasonal disjoin. The flexible co-generation units are mainly located in urban ar-

eas where they overcompensate for the increasing electricity demand of the heat

pumps also in the winter days, such that a decrease of the peak load results. Pho-

tovoltaic feed-in is higher in the rural areas but does not exceed 45 % of the original

peak demand. Nevertheless, higher feed-in peaks are uncritical since they can be

curtailed without significant economic impact.

A sensitivity analysis of the scenario reveals enforcing economic effects between

heat pumps and photovoltaics due to self-consumption. Also major parts of the

fuel cells are not cost optimal for the case that the heat pumps are excluded from

the solution space. The heat pumps increase the full load hours of the fuel cells

and improve their profitability. Together, they state a cost effective supply system

with large flexibility potentials that has a significant higher efficiency than a sim-

ple gas boiler. Further, an additional insulation of the envelope of the building is

only chosen for the buildings that are in the refurbishment cycle, resulting in a re-

duction of the space heat demand of 31.2 % to the Reference scenario. Higher

extrinsically enforced refurbishment rates significantly increase the cost without re-

sulting in major GHG emission reductions. Instead an opposing effect is observed

where the buildings change to cheap fossil boilers that are more cost effective for

low energy demands than the investment intensive heat pumps. Nevertheless, the

lower energy demands are not able to compensate for the higher carbon footprint

of the gas boilers. Smart controllers that dynamically adapt the comfort tempera-

ture in the buildings are a cheap solution to reduce the space heat demand and are

therefore installed in half of the archetype buildings. Nevertheless, their potential

is reduced in case of high refurbishment rates since their absolute energy saving

effect is reduced and does not further qualify their additional investment costs.

The sole cost minimization leads not to sufficient greenhouse gas emission sav-

ings. In consequence, three pathways to a carbon neutral building stock are

introduced:

1. First, the technical feasibility of a building stock is shown that is completely in-

dependent from the electricity grid. Huge capacities of fuel cells and batteries

are required to satisfy the electricity load of the buildings while the heat de-
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mand is still mainly supplied by heat pumps. It states the most cost expensive

zero emission pathway where an increased demand of other energy carriers

such as bio-methane results, questioning the sense of such a transition from

a cross-sectoral perspective.

2. The second pathway is inspired by the net Zero Energy Building definition of

the European Union where the buildings can compensate for the carbon foot-

print of the energy demand by an energy export. Such a scenario results in

a moderate aggregated cost increase of 10.1 % to the sole cost minimization

scenario for the whole building stock. Significantly higher amounts of photo-

voltaics are deployed that feed 117 TWh/a of electricity to the grid. It illustrates

the high potential that the residential building stock can have to an overall en-

ergy transition. The residual demand is covered by a mixture of 99 TWh/a

of solid and gaseous biomass and 84 TWh/a of electricity. The grid load of

the electricity demand is not significant changing to the sole cost minimization

case, besides the higher photovoltaic feed-in.

3. The last scenario is based on a consideration of a 100 % renewable electric-

ity grid supply. For this case all buildings switch to heat pumps to lower their

carbon footprint while no fuel cells are deployed anymore. Only small peak

boilers are operated in the winter with bio-methane. This leads to an increase

of the total residential electricity demand to 148 TWh/a while the aggregated

peak load of the residential sector increases by 54 % to the Reference sce-

nario. It is the most cost effective zero GHG scenario but has the highest grid

impact.

The deployed technologies of the carbon neutral building stock cases are similar

to the Min Cost scenario with an electrification of the heat supply and high pho-

tovoltaic deployment rates. No significant increase of refurbishment measures is

recognizable while the integration of the fuel cells is sensitive to the scenario but a

shift from fossil to renewable energy carriers is observed.

6.4 Conclusions

All in all, the novel bottom-up model is able to respect the diverse demand of the

building stock and to predict the cost optimal adoption and operation of the residen-

tial energy supply.

The following main conclusions can be drawn from its application to a supply sce-

nario in 2050:
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1. All pathways to a carbon neutral building stock are dominated by the deploy-

ment of photovoltaics and heat pumps, stating that their installation is robust

in terms of economic and emission reduction objectives.

2. Self-consumption of electricity, especially for electrified heat applications, can

significantly decrease the carbon footprint of residential buildings and is more

cost effective than refurbishment measures.

3. The significant seasonal change of the residential electricity grid load can only

be diminished by distributed flexible co-generation units, e.g. fuel cells within

the scenario, that are either operated by a fossil or a renewable fuel.

4. Rural areas are more critical in terms of the peak electricity load than the

urban areas since the balancing flexible co-generation units are not cost ef-

fective in small single-family buildings. Further, the specific heat demands are

higher in the rural regions and constitute higher heat pump loads.

Lastly, the spatial and temporal resolution of the model makes it suitable for a future

coupling with grid models to determine congestions and the flexibility potential of

the residential buildings sector. The cost optimal adoption and operation approach

allows thereby the analysis of the impact of political incentives on the residential

grid load.
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Appendix A

Optimal residential energy supply

The following Appendix clarifies the sub-models used in the single building opti-

mization model, as introduced in Chapter 3. Section A.1 provides additional data

for the electricity load model. The used building data is illustrated in Section A.2.

The economic data of the considered supply technologies are discussed in Sec-

tion A.3.

A.1 Electricity load model

The electricity load model relies on an open-source model from Richardson et al.

[2010]. The majority of the data is introduced in their publication and the open-

source model. This section further illustrates the relevant resident data in Section

A.1.1. The fitting of the profiles to the seasonal variation of a German standard load

profile is shown in Section A.1.2.

A.1.1 Resident data

The model is based on a Markov-Chain with transitional state probabilities. The

states are discretely chosen in the model. Here, the relative transitional probabilities

are multiplied with each other to get the overall probability of a certain activity at a

certain time at the day. The resulting probabilities are shown in Figure A.1 for a two

person household during week-end. These profiles are further available for one to

six person households for week-days and weekend-days.
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Figure A.1: Activity probability for a two person household during a weekend-day

based on the four-state occupancy model of McKenna and Thomson [2016].

Figure A.2: Occupancy activity probability for a single person during a week-day

in case that it is at home and active. The data is based on Richardson et al. [2010].

The visualization illustrates the day-night pattern of active and sleeping occupants.

Further, the vacancy of the occupants during the day due to work and other activi-

ties is shown.

Different activities are performed for the case that the occupants are at home and

active. The probability that an activity is triggered is shown in Figure A.2 for a single

active person that is at home.

The used appliances are shown with their related power demand in Table A.1. The

Ownership defines the probability that the appliance is belonging to the household.

The Activity use refers to the previously introduced activities that triggers the usage
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of the appliance.

While the data provides a good starting point, they should get adapted by national

time of use-surveys and new appliance data in future. Further, their change could

get predicted into the future in order to incorporate more efficient appliances or a

changing occupancy behavior.

Table A.1: Considered appliance data of the electricity load model. It is derived

from Richardson et al. [2010].

Name Group Activity

use

Owner-

ship

[-]

Standby

power

[W]

Mean

cycles

power

[W]

Mean

cycles

length

[min]

Delay

restart

[min]

Calibration

scalar [-]

Chest freezer Cold Level 0.163 0 190 14 56 0.062728

Fridge freezer Cold Level 0.651 0 190 22 44 0.050146

Fridge Cold Level 0.430 0 110 18 36 0.031307

Upright freezer Cold Level 0.291 0 155 20 40 0.038548

Answer machine ICT Active 0.900 1 0 0 0 0.000000

CD player ICT Active 0.900 2 15 60 0 0.007206

Clock ICT Level 0.900 2 0 0 0 0.000000

Phone ICT Active 0.900 1 0 0 0 0.000000

Hifi ICT Active 0.900 9 100 60 0 0.000467

Iron ICT Iron 0.900 0 1000 30 0 0.008002

Vacuum ICT House

cleaning

0.937 0 2000 20 0 0.006952

Fax ICT Active 0.200 3 37 31 0 0.000839

PC ICT Active 0.708 5 140 300 0 0.004226

Printer ICT Active 0.665 4 335 4 0 0.002746

TV1 ICT TV 0.977 3 124 73 0 0.032121

TV2 ICT TV 0.580 3 124 73 0 0.032121

TV3 ICT TV 0.180 2 124 73 0 0.034449

VCR/DVD ICT TV 0.896 2 33 73 0 0.032121

Receiver ICT TV 0.934 15 26 73 0 0.032121

Hob Cooking Cooking 0.463 1 2400 16 0 0.012360

Oven Cooking Cooking 0.616 3 2125 27 0 0.006480

Microwave Cooking Cooking 0.859 2 1250 30 0 0.002753

Kettle Cooking Active 0.975 1 2000 3 0 0.006426

Small cooking Cooking Cooking 1.000 2 1000 3 0 0.008437

Dish washer Wet Cooking 0.335 0 1130 60 0 0.007388

Tumble dryer Wet Laundry 0.416 1 2500 60 0 0.029510

Washing machine Wet Laundry 0.781 1 405 138 0 0.051719

Washer dryer Wet Laundry 0.153 1 792 198 0 0.054725

Elec. heater 1 Water

heating

Active 0.170 0 3000 20 0 0.014330

Elec. heater 2 Water

heating

Active 0.010 0 3000 5 0 0.035160

Elec. shower Water

heating

Washing/

dressing

0.670 0 9000 3 0 0.009661
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A.1.2 Seasonal fitting of the electricity load model

Richardson et al. [2010] already show that the the original CREST-model does not

cover the seasonal variation of its validation data set sufficiently. As seen in Figure

A.3, this observation applies also for the comparison of the model results with the

German Standard Load Profile (SLP) BDEW [2011] for the households (H0) or the

measured data set from Tjaden et al. [2015].
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Figure A.3: Comparison of the average weekly load of 1000 normalized annual

simulations of the CRESTmodel before and after fitting to the Standard Load Profile

and the average HTW profiles.

Therefore, a dynamic correction factor is introduced that strengthens the seasonal

variation of the load profiles generated by the load model. The approach is similar

to the methodology that is used to create a more dynamic sampling of the SLP

BDEW [2011]. A correction factor for every day in the year dyear is introduced. It is

described by a polynomial 4th order as follows:

rcor(dyear) = p0 + p1dyear + p2d
2
year + p2d

3
year + p4d

4
year (A.1)

The coefficients are determined by minimizing the squared error between the mean

daily load of the original CREST model and the mean daily load of the SLP for all

days in the year. The resulting coefficients are seen in Table A.2 and the fitted

CREST model is shown in Figure A.3.

Table A.2: Polynomial coefficients for the seasonal variation of the electricity load

model in comparison to the coefficients of the SLP.

p0 p1 p2 p3 p4
SLP 1.24 2.1e-3 -7.02e-5 3.2e-7 -3.92e-10

Model fit 1.14 1.99e-03 -4.91e-05 2.09e-07 -2.46e-10
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With the integration of this daily changing coefficient, the updated model is able to

describe seasonal variation of the residential electricity load sufficiently.

A.1.3 Deviation between the electricity load model and the two vali-
dation profiles

Figure A.4: Distribution of the deviation between the considered electricity load

model for 1000 runs (Model) and the two validation profiles (SLP and HTW). The

profiles are normalized to 3515 kWh/a.
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A.2 Building parameters

Auxiliary to Section 3.2, this section introduces the configuration of the considered

building types.

All building parameters are derived from the Tabula/EPISCOPE database. It has a

large scale wherefore this section only illustrates the most relevant parameters for

a limited set of building types.

It is shown for example Apartment Buildings (AB), Multi-Family Houses (MFH),

Single-Family Houses (SFH), and Terraced Houses (TH).

Table A.3 illustrates the number of apartments and the number of storeys of a lim-

ited set of archetype buildings. All SFH and TH are single apartment buildings with

one to two floors. The AB and MFH have higher floor and apartment numbers.

Table A.3: Number of apartments and storeys for different representative types

of buildings in the different construction periods in Germany, based on the Tabula

database [IWU, 2010].

Type AB MFH SFH TH AB MFH SFH TH

Year Number apartments Number storeys

0 - 5 1 - - 4 2 -

1860 11 4 1 1 5 4 2 2

1919 15 2 2 1 5 3 2 2

1949 20 9 1 1 5 3 1 2

1958 48 32 1 1 8 4 1 2

1969 48 8 1 1 8 4 1 2

1979 24 9 1 1 6 3 2 2

1984 24 10 1 1 6 3 1 2

1995 - 12 1 1 - 4 1 2

2002 - 19 1 1 - 3 2 2

2010 - 17 1 1 - 5 2 2

2016 - 17 1 1 - 5 2 2

The considered outer wall areas and their related thermal transmittance (U-Value)

are listed in Table A.4. In general, the high reduction of U-values from around 2

W/(m2K) in the early 20th century to 0.28 W/(m2K) in 2010 is observed which is

mainly related to the strict energy savings regulations. The wall area depends on

the shape and size of the building.
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Table A.4: Parameters of the main outside wall (Wall 1) for different types of build-

ings and different construction periods in Germany, based on the Tabula database

[IWU, 2010].

Type AB MFH SFH TH AB MFH SFH TH

Year U-Values [W/(m2K)] Wall Area [m2]

0 - 2 2 - - 749.31 169.78 -

1860 1.7 2.2 1.7 1.7 305.4 146 194.04 74.47

1919 1.4 1.7 1.7 1.7 1244 323.54 235.3 64.14

1949 1.2 1.2 1.4 1.2 1376 462 117.8 134.66

1958 1.2 1.2 1.2 1.2 3247.79 2039 141.2 40.42

1969 1.1 1 1 1 2130 336 177.55 53.72

1979 0.9 0.8 0.8 0.8 1673.73 447.13 159.4 54.1

1984 0.6 0.6 0.5 0.6 1673.73 774.8 211.3 50.9

1995 - 0.4 0.3 0.6 - 695.8 126.6 45.2

2002 - 0.25 0.3 0.3 - 1698 188.86 140.7

2010 - 0.28 0.28 0.28 - 1193.16 227.6 137.8

2016 - 0.28 0.28 0.28 - 1193.16 227.6 137.8

Equivalently, the roof areas and their related thermal transmittance (U-Value) are

listed in Table A.5. The U-values reduce from 1.3 W/(m2K) in the early 20th century

to 0.2 W/(m2K) in 2010. They are below the U-Values of the walls. Here, only the

areas for the first roof type are shown. Therefore, it does not imply that no roof

exists at all, although the listed roof area is here sometimes zero.

Equivalent values exists for the windows, the floors and the doors. Additionally, the

transmittance and the orientation of the windows is provided.

These buildings define the reference buildings and are adapted to the required

building types in the model. Therefore, following modifications are made.

First, the Tabula building with the same surrounding type and the most similar ref-

erence area Atab
ref is selected as basis for the shape of the building. This shape gets

adapted to the reference area of the new archetype building Anew
ref .

The number of storeys nstor and the height of the room hroom are kept constant

wherefore also the height of the building is not changing. All floor areas Afloor,f

and all roof areas Aroof,f are proportionally scaled with the size of the reference
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Table A.5: Parameters of the main roof (Roof 1) for different types of buildings and

different construction periods in Germany, based on the Tabula database [IWU,

2010].

U-Values [W/(m2K)] — Wall Area [m2]

Type AB MFH SFH TH AB MFH SFH TH

Year

0 - 2.6 2.6 - - 284.1 134.19 -

1860 1.3 1.3 1.3 1.3 231.8 102.8 83.12 0

1919 1.4 1.4 1.4 1.4 0 158.5 213.99 0

1949 0.6 1.4 1.4 1.4 0 0 125.4 0

1958 0.8 0.8 0.8 0.6 0 0 168.9 0

1969 0.5 0.5 0.5 0.5 0 0 183.13 0

1979 0.5 0.5 0.5 0.5 0 0 100.8 97.63

1984 0.4 0.4 0.4 0.4 0 0 123.2 64.87

1995 - 0.35 0.35 0.35 - 0 115.5 77.4

2002 - 0.2 0.25 0.2 - 580 85.91 91.3

2010 - 0.2 0.2 0.2 - 321.05 131.9 75.7

2016 - 0.2 0.2 0.2 - 321.05 131.9 75.7

area as

Anew
floor,f =

Anew
ref

Atab
ref

Atab
floor,f ∀ f (A.2)

Anew
roof,r =

Anew
ref

Atab
ref

Atab
roof,r ∀ r (A.3)

.

The wall areas Awall,w and the window areas Awindow,i are scaled with the root of

the ratio in order to keep a consistent overall shape as

Anew
wall,w =

√

Anew
ref

Atab
ref

Atab
wall,w ∀ w (A.4)

Anew
window,i =

√

Anew
ref

Atab
ref

Atab
window,i ∀ i (A.5)

.

Although the A/V-ratio is changing, such a scaling approach produces a further

feasible overall shape of the building. Further, a similar aggregated A/V-ratio for the
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nationwide perspective is expected since the buildings are sometimes down-scaled

and sometimes up-scaled.

The Tabula database further provides data for the case that the roof is tilted or flat.

For tilted roofs, the roof is divided into two areas with a tilt of 45° and opposing

orientations from which 75% can be used for photovoltaic or solar thermal installa-

tions. For the case of a flat roof, an equivalent roof area of 28 % can be used for

photovoltaic or solar thermal installations while the tilt is considered with 30° and a

southern orientation. The utilization factors are slightly above the values of 58 %

and 27 % considered by Mainzer et al. [2014].

The physical properties of the envelope, e.g. the thermal transmittance, are de-

termined by the the construction year of the archetype building and the building

type with the most similar reference area. For the case of refurbished buildings,

the envelop standard of the buildings constructed thirty years later is considered.

Nevertheless, the minimum envelope standard of a refurbished buildings is defined

by the envelope standard of the construction year 1995.

The required supply temperatures are also determined by the building age. It is

assumed that all buildings before 1990 have a design supply temperature T des
sup of

70 °C. This reduces for buildings between 1990 to 2000 to 60°C, 2000 to 2010 to

50°C and for buildings constructed after 2010 to 40°C. For all buildings that have

more than six apartments, the supply temperature is increased by 5 °C since a

bigger heat supply network is required. The supply temperatures assumed are

in a similar range as the supply temperatures reported by Staffell et al. [2012] for

different heating systems.

A.3 Techno-economic parameters

This section introduces all relevant economic and technical data to parametrize the

introduced building and supply system optimization. For the case of photovoltaics

(Section A.3.1), batteries (Section A.3.2) and fuel cells (Section A.3.3), today’s and

future techno-economic parameters are discussed in order to account for global

experience rates sufficiently. Heat pumps (Section A.3.4), boilers (Section A.3.5)

etc. are assumed to not change significantly wherefore only parameters for today

are introduced. The considered supply system with all modeled supply technolo-

gies can be seen in Figure A.5. Energy and resource costs, like electricity tariff

or biomass price, are values varying with the later scenarios and are therefore not

discussed in this section. The energy and resource imports, like electricity grid or

biomass supply, are modeled as Source objects with a flexible import. Therefore,
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they only have economic parameters that vary with the later introduced scenarios.

Therefore, they are not discussed in this section.

Figure A.5: Superstructure of the technology options for the supply system of a

single building.

All literature values that consider a different currency than Euros are converted with

the 2015 exchange rate.

Earlier versions of this work considered also technologies allowing for 100% self-

sufficient supply systems, like a reversible Solide Oxide Cell [Nguyen et al., 2013]

and Liquid Organic Hydrogen Carrier [Eypasch et al., 2017; Teichmann et al., 2012].

Nevertheless, they are discarded in this work since they further increase the model

complexity. Additionally, their economic potential is seen as limited in a country with

an existing electricity grid infrastructure [Kotzur et al., 2017; Röben, 2017].

A.3.1 Photovoltaic

The photovoltaic is modeled as a Source object. Its performance model is intro-

duced in 3.3.4, wherefore this section mainly discusses the related investment cost.

The section separates between cost for today and cost for the future.
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Current status of photovoltaic

Figure A.6 introduces market data and literature values for photovoltaic investment

from market analysis and different literature sources. The market data are full in-

vestment cost offers for roof-top photovoltaic in Germany in 2014, including the in-

stallation. They have a high spread, resulting in offers from 1000 to 2300 Euro/kWp

for the same scale of photovoltaic. Although parts of the variation are related to the

different matters of costs included in the different offers, the majority of the variance

is explained by the high dynamics of the market. No significant economy of scale

is recognizable. Nevertheless, the collector of the data set [Löhr, 2016] reports an

average price of 1482 Euro/kWp for 0 to 5 kWp , 1425 Euro/kWp for 5 to 10 kWp and

1415 Euro/kWp for 10 to 15 kWp. The cheapest 25 % of all offers were 1327, 1299

and 1295 Euro/kWp regarding the same three capacity ranges. The second mar-

ket data set [EuPD-Research, 2016] is from 2016 and shows a higher economy of

scale from average prices of 1688 Euro/kWp for plants smaller than 3 kWp to 1228

Euro/kWp for plants bigger than 10 kWp. The range from minimal until maximal

price are in the same scale as the first market data set.

Figure A.6: Investment cost of photovoltaic for different capacities based on market

and literature data, along with the considered cost of this work.

The considered cost values of the literature are more conservative with 1615

[Schütz et al., 2017a], 1640 [Linssen et al., 2015] and 2342 Euro/kWp [Lauinger

et al., 2016]. The value from Lauinger et al. [2016] can be seen as an outlier be-
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cause it is derived from the Swiss market. Lindberg et al. [2016a] consider a small

scale-independent initial investment 1000 Euro for mounting and installation costs

which causes high specific expenses for small photovoltaic units. The specific in-

vestment are additional 1800 Euro/kWp and derived from data of 2014. The bottom

line is defined by the cost of utility scale ground-mounted photovoltaic in the year

2015 of 1000 Euro/kWp [ISE, 2015].

Although the photovoltaic had a price drop with a historical experience rate of 20.9%

for every doubling of produced modules [ISE, 2015], it stagnated in Germany from

2015 to 2017 [ISE, 2017] because the local demand dwindled since the adaption of

EEG-levy in 2014 [EEG, 2014]. Therefore, in this work only a moderate decrease

of the cost is assumed for the last years and the photovoltaic is considered with

1000 Euro fix expenditures and 1400 Euro/kWp. The resulting specific cost curve

is seen in Figure A.6.

Future development of photovoltaic

Germany lead the international ranking of the total installed photovoltaic capacity

until 2015 [IEA-PVPS, 2016] because it started at an early stage with high subsi-

dized investments into the technology. In consequence, the majority of the pho-

tovoltaic were deployed when the module costs where still high, wherefore the re-

quired subsidies to fill the profit gap are still payed in form of the EEG-levy today.

Nevertheless, a benefit is that production and technology improved and with it the

overall experience curve proceeded.

The picture of a German dominated photovoltaic market has dramatically changed

since the photovoltaic cost dropped to a level where it is becoming competitive

with fossil electricity generation: While Germany had 1.5 GW of new photovoltaic

installations in 2016, 14.7 GW were installed in the USA and 34.45 GW in China

in the same time frame [IEA-PVPS, 2017]. This totaled in existing photovoltaic

capacities around 300 GW worldwide in 2016 [ISE, 2017].

With these prospering markets also a further price drops of the photovoltaic mod-

ules are expected. Extrapolating the historical experience rate of 22.9 %, ISE [2015]

expect a drop from 2015 around 500 Euro/kWp module price to a price between 175

and 315 Euro/kWp in 2050 at a cumulative installed capacity of 30749 GW or 4295

GW depending on the scenario. 100 to 200 Euro/kWp is seen as the line where fun-

damental material cost dominate the overall module price. IRENA [2016] assumes

already for 2025 a module price between 280 to 460 $/kWp for an extrapolation of

a cumulative installed capacity of 1750 to 2500 GW until 2030. A bottom-up tech-

nology based approach supports this estimation [IRENA, 2016], concluding cost of
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300 to 410 $/kWp.

The experience rate of the Balance of System (BoS) cost, including cabling, mount-

ing, permitting, inverter etc., cannot keep up with the experience rate of the mod-

ules: Although, the BoS in Germany were 2015 with 500 $/kWp together with China

the cheapest worldwide, e.g. the BoS in the US were almost three times as expen-

sive [IRENA, 2016], their share at the overall photovoltaic costs increased signifi-

cantly from 29 % end of 2006 to 53 % end of 2016 for rooftop photovoltaic. Strupeit

and Neij [2017] conclude that the historical experience rate for BoS in Germany is

around 10-12 %.

A key driver to reduce the BoS cost further is an increase of the cell efficiency,

leading to higher capacities for the same modules and smaller specific BoS. The

challenge thereby is that the efficiency limit, e.g. for mono-crystalline photovoltaic,

is seen by 25 % for industrial modules [ISE, 2015]. Alternative technologies, e.g.

a Persovskite-Silicon tandem as dual-junction, could allow to achieve practical effi-

ciencies of up to 35 % [ISE, 2015]. Still, they would require more complex produc-

tion processes and additional materials, increasing the module cost. Therefore, a

trade-off between module cost and BoS cost has to be made.

The second advantage of an increased cell efficiency would be a reduced cover-

age rate for the same peak power installed. Mainzer et al. [2014] illustrate it for

the potential of residential roof-top photovoltaic in Germany: With state of the art

modules they conclude a potential of 208 GW on residential rooftops in Germany

which increases to 641 GW for their considered technology advancements in 2050.

Therefore, this work assumes a less aggressive experience rate of the overall sys-

tem cost while assuming that high efficiency technologies will take over the market.

Prognos [2016] considers an almost linear cost reduction of rooftop photovoltaic

from 1252 Euro/kWp in 2015 to 629 Euro/kWp in 2035. Rech and Elsner [2016]

suggest a price range of 650 to 400 Euro/kWp for rooftop photovoltaic in 2050 with

an efficiency between 24 % and 35 %. In this work, the upper range is taken for the

cost in 2050 with 650 Euro/kWp, along with an efficiency of 30%.

A.3.2 Battery

Building integrated stationary battery systems can increase the self-consumption

of distributed energy resources or offer a flexibility to the grid. They are modeled as

electricity Storage object. All data and modeling refers to their net-capacity.

The charge- and discharge efficiencies of the battery systems are assumed to be
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each 95 %, which is typical for today’s Li-Ion batteries [Kairies et al., 2016]. No sig-

nificant improvement of these values is expected for the future. The self-discharge

rate is considered with 0.01 % per hour [Elsner and Sauer, 2015].

The lifetime of batteries available at the market is guaranteed with 5000 to 10000

cycles Tesla [2017]. Since a modeling of this as operation-depending lifetime would

constitute a non-linear problem, a lifetime of 15 years is assumed which would allow

for 333 to 666 cycles per year.

Current status of batteries

Figure A.7 introduces the different market data and literature values for battery cost

today and predictions for the future. Similar to the photovoltaic, it exists a high

variance in the real market data. A small economy of scale is recognizable which is

probably related to the peripheral components of the batteries. While the majority of

the costs are above a value of 1000 Euro/kWh, the Tesla Powerwall 2 [Tesla, 2017]

constitutes an exception with an investment of 7150 Euro for a capacity of 13.5

kWh, resulting in specific investment of 5̃30 Euro/kWh. It is questionable whether

this price represents the current real production cost or if it is strategic price to gain

a higher market penetration.

The literature values for today’s cost lay above this price: Linssen et al. [2015]

assume 1000 Euro/kWh for the near future. Schmidt et al. [2017] report 1530

Euro/kWh in 2015 as average cost for Li-Ion batteries, which aligns with the market

data. The study by acatech [Elsner and Sauer, 2015] respects this discrepancy of

the market data by providing a range from 580 Euro/kWh to 2100 Euro/kWh for the

current residential battery prices. All in all, it highlights the volatility of the market

similar to the photovoltaic market.

Nykvist and Nilsson [2015] give an indication about the prices that car manufac-

turers pay for batteries, which were 300 $/kWh in 2015. They state that many

publications take outdated prices for batteries. Although residential battery packs

will stay more expensive than battery packs for electric vehicles, it shows a high

potential for future price drops of stationary battery storage systems.

This work considers a value similar to Klingler [2017] (907 Euro/kWh) with a fix

investment of 2000 Euro and a specific investment of 700 Euro/kWh.
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Figure A.7: Investment cost of batteries for different capacities based on market

and literature data, along with the considered cost of this work.

Future development of batteries

The range of assumed future cost for stationary battery systems is vast: Klingler

[2017] assume 441 Euro/kWh for 2040, while Prognos [2016] assumes already

an investment of 442 Euro/kWh for the year 2020 and 259 Euro/kWh for the year

2035. Elsner and Sauer [2015] again give a range between 145 Euro/kWh and 455

Euro/kWh for the year 2050.

The market is even more difficult to predict than the photovoltaic market, since the

costs of batteries are highly depending on to the roll out of battery electric vehicles.

Additional, resource availability is more significant for batteries than for photovoltaic

wherefore it is difficult to assume a rigorous learning rate. A competing resource

demand will significantly influence the final cost of batteries at high penetration

rates. Therefore, a conservative value is assumed for the futures cost of residential

stationary energy storage systems with a fix investment of 1000 Euro and a specific

investment of 300 Euro/kWh.



166 A Optimal residential energy supply

A.3.3 Fuel cell

Fuel cells allow for efficient heat and electricity co-generation, and are especially

favored for small scale applications where the efficiency of combustion based tech-

nologies are dropping. They are modeled as Transformer unit.

Technical characteristics of fuel cells

Fuel cells available at the market available today can be divided into two types:

Solide Oxide Fuel Cells (SOFC) or Polymer Electrolyte Fuel Cells (PEFC). The

SOFC has higher conversion efficiencies than the PEFC because of the high op-

eration temperatures above 700 ◦C, and its ceramics membrane allows for higher

gas impurities and with it lower degradation rates than the polymer membrane of

the PEFC. The drawback of the SOFC is that the combination of high operation tem-

perature and ceramic membrane causes high thermo-mechanical tensions, e.g. in

case of a cold-start of the system. Therefore, today’s available systems such as the

BlueGEN from SolidPower [SolidPower, 2018] are only shut down for maintenance

in order the keep the number of thermal cycles small. This drawback does not exist

for the PEFC which can be flexible operated.

Although these differences would require two independent models of the fuel cells,

this work does not separate between them in order to keep the computational com-

plexity of the overall system model low. Instead, just a single fuel cell type is con-

sidered in the system.

Available methane operated SOFC-systems can reach electrical efficiency up to

60% and the overall efficiency including heat extraction is given with 85% [Solid-

Power, 2018]. Similar efficiencies can be reached with hydrogen [Peters et al.,

2016], although a different system design would be required. Napoli et al. [2015]

consider for the PEMFC an electrical efficiency of 34%. The efficiency including the

heat extraction was assumed for both systems SOFC and PEMFC with 90%.

Based on this, a mixed fuel cell system is considered with an electrical efficiency of

52%, and 33% heat efficiency with regard to the lower heating value of the fuel. No

part load or ramp up constraints are considered.
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Figure A.8: Investment cost of fuel cells for different capacities based on market

and literature data, along with the considered cost of this work.

Current status of fuel cells

Figure A.8 shows the different cost values for fuel cells assumed in the literature,

and a rare selection of real market data in Germany [HZwei, 2016].

The DOE [2016] states that current prices for prime movers in the US are in the

range of 20000 $/kWel for small stationary fuel cell systems below 11 kWel and

4000 $/kWel for larger systems, which would align with the German market data.

Additional, the DOE assumes that today’s production costs are at 2300 to 2800

$/kWel at manufacturing volumes of 50000 units per year.

The prices considered by Comodi et al. [2015] of 2000 Euro/kWel are not reachable

for today. Even the inclusion of subsidies is not sufficient to reach such prices,

although they can amount up to 40 % of the total costs of the fuel cell system

in Germany [Gleitmann, 2016; KfW, 2016]. Also the investment cost function of

Jungbluth [2007], who assumes for small systems 2500 Euro/kWel can only be

seen as a prediction for future cost but does not represent the effective prices today.

Nevertheless, the cost function has the advantage that it includes an economy of

scale derived from the prices of internal combustion CHPs.
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Murugan and Horák [2016] estimate the prices for today’s small scale systems be-

tween 1 and 3 kWel to be around 15000 Euro. Based on this, this work assumes the

investment costs with a fix investment of 10500 Euro and 3000 Euro/kWel for the

year 2018. Those prices lay above the production costs assumed by the DOE and

align with today’s German market prices including the subsidies. The assumed cost

of Lauinger et al. [2016] could then be reached for large scale fuel cell systems.

Future development of fuel cells

The future costs of fuel cells have been historically underestimated. E.g. the DOE

targeted 1200 $/kWel for the year 2015 and 1000 $/kWel for the year 2020 in 2012.

Staffell and Green [2013] corrected this value to 3000 to 5000 $ for 1 to 2 kWel

systems in 2020. They include further peripheral components like auxiliary heating

units plus a heat storage systems, which are not integrated in the DOE target. The

updated goal in 2016 of the DOE is to achieve investment costs of 1500 $/kWel for

2020 DOE [2016].

Still, all cost assumptions are too optimistic for 2020 if today’s market prices are

taken into account. Therefore, this work conservatively assumes that such fuel

cell prices can only be reached in future for larger systems: The fix investment for

the future 2050 case is considered with 4000 Euro and the specific investment is

assumed with 1500 Euro/kWel.

A.3.4 Heat pump

The heat pump is seen as key technology to provide efficiently low temperature

space heat. It is modeled as a Transformer with a time-dependent efficiency which

converts electricity and ambient heat into low temperature heat, as shown in Sec-

tion 3.3.3. No major cost reductions are expected for the technology in the future

because it is a Carnot-machine and its components are produced in large numbers

since decades.

All following costs are related to the thermal capacity of the heat pump. The Co-

efficient Of Performance (COP) or rather the heating power is normally given for

reference conditions, e.g., 2 °C to 35 °C (A2/W35) temperature difference, or 7 °C

to 27 °C (A7/W27) temperature difference. Here, the heating power for the A2/W35

case is used to calculate the specific investment costs.

Figure A.9 shows the market prices for different heat pumps at different scales and
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Figure A.9: Investment cost of heat pumps for different capacities based on market

and literature data, along with the considered cost of this work.

the cost values assumed in the literature for heat pumps. Comparing the range

of values to the range of prices reported for photovoltaics and the electrochemical

technologies, a much more consistent cost database is noticeable. This indicates

a more stable market and supports the assumption of no major future price drops.

A strong economy of scale is recognizable for the market data. This is also covered

by the majority of the literature [Streblow and Ansorge, 2017; Sterchele et al., 2016;

Schütz et al., 2017a]. Some of the data [BRD, 2013] originally included also an

investment into a floor heating system. This part of investment is excluded, since

the floor heating is just required for reducing the supply temperature of the heating

system to gain a better heat pump efficiency. Nevertheless, the supply temperature

is part of the model as introduced in section 3.3.3 and dynamically determined

based on the heating system and the heat load itself.

Two cost functions deviate from the other literature and market data: [Lauinger

et al., 2016] can not sufficiently model the economy of scale of the heating system

since they just have a continuous linear cost model. Further, they consider the costs

for a ground source heat pump, resulting in higher overall investment costs, while

the other values are reported for air-source heat pumps. [Lindberg et al., 2016a]

overestimates the cost for large heating systems. Nevertheless, they also state that

their cost assumptions are just valid for scales between 5 kWth and 15 kWth.

This work aligns with the other data and fit the heat pump prices with 5000 Euro of

fix investment a 600 Euro/kWth specific investment related to the thermal capacity

of the heat pump.



170 A Optimal residential energy supply

A.3.5 Oil and gas boiler

Although heat pumps have an increasing market share for the heat supply in new

buildings [DESTATIS, 2014], the majority of today’s energy supply is still combustion

based: Conventional oil and gas boilers cover together 74.6 % of the residential

heat in Germany in 2014 [BDEW, 2014]. Therefore, their technology can be seen

as mature and as well no major cost reductions are expected in the future. They

are modeled as Transformer with a constant efficiency. This simplification is made

to keep the model linear despite the fact that a changing part load behavior exists

in reality.

Market prices and cost functions assumed in the literature can be seen in Figure

A.10 for boilers. Besides two outliers, again a consistent database for the market

can be recognized which is similar to the heat pump data. An exception is Lindberg

et al. [2016a] who overestimate the costs for large capacities due to their cost curve

fitting to smaller technology scales.

Figure A.10: Investment cost of boilers for different capacities based on market

and literature data, along with the considered cost of this work.

Three observations can be made in comparison to the heat pump data:

1. The specific investment cost are almost 70 % smaller than the investment for

the heat pumps.

2. A smaller economy of scale is recognizable.

3. The availability of boilers starts at capacities around 10 kWth, while for the

heat pumps also smaller devices, around 5 kWth, are available.
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The observations determine each other: The heat pump is a more complex and

therefore more expensive technology than a conventional boiler. Therefore, their

scale is optimized and they are often installed along with a electric or gas boiler

covering the peak demands, resulting in scales smaller than the peak heat load

of the building. This does not count for the conventional combustion based heat

supply where a single technology normally covers the whole heat demand.

A.3.6 Internal combustion engine

The internal combustion engine is also a Combined Heat and Power plant (CHP)

and can be seen as alternative to the fuel cell. It is also modeled as Transformer

with two constant efficiencies for each heat and power generation that also results

in a constant ratio of heat and power generation.

Figure A.11: Investment cost of internal combustion CHPs for different capacities

based on market and literature data, along with the considered cost of this work.

ASUE [2015] frequently publishes techno-economic characteristics of the German

CHP market, including a large set of real CHP units. They derive cost curves

for different scaling ranges of CHP units, as shown in Figure A.11. The strong

scaling effects cannot be captured for large ranges with the simple cost approach

considered by Lindberg et al. [2016a], Streblow and Ansorge [2017] and this work.

Lindberg et al. [2016a] adapt their cost curve for small CHP scales below 5 kWel,

while the cost curve of Streblow and Ansorge [2017] is probably influenced by large

scale CHP units. Their scale-independent initial investment of 23942 Euro hampers

the profitability of any small-scale CHP plant. The cost assumed by Comodi et al.

[2014] for the Micro Gas Turbine (MGT) and the Internal Combustion Engine (ICE)

could just be reached for scales which are not relevant for single residential building

supply systems.
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The costs in this work are assumed such that they align with the ASUE [2015] data

for a wide range by assuming a fix investment of 15000 Euro and 1000 Euro/kWel.

A.3.7 Heat storage

The heat storage is the second relevant Storage technology considered, besides

the battery. It can be charged by all considered heat generators with the limita-

tions introduced and explained in Section 3.3.3. A simple unpressurized hot water

storage for sensitive heat is considered.

Figure A.12: Investment cost of solar thermal for different capacities based on

market and literature data, along with the considered cost of this work.

The different costs in literature and for storage systems at the market are shown

in Figure A.12 for different storage volumes. A description over the amount of

heat that can be stored would be misleading since it is depending on the operation

conditions.

Lauinger et al. [2016] and Lindberg et al. [2016a] both consider small scale stor-

age systems and align with the market data in the range below 1.5 m3 of 3000 to

5000 Euro/m2. [Lindberg et al., 2016a] do not define the cost in Euro/m3, instead

assume 90 Euro/kWh for a storage operated at ∆T = 30◦C. Schütz et al. [2017a]

define the lower bound of the costs for storage systems at the market but captures

sufficiently the economy of scale with cost of around 1000 Euro/m3 for a 2 m3 stor-

age. It is to be expected that they do not consider the storage installation costs.

Rager [2015] introduces a cost function which applies for large scale seasonal stor-

age applications in districts and overestimates therefore the cost of smaller storage
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applications. Since Streblow and Ansorge [2017] align well with the market data,

their cost data are rounded and considered for this work with a fix investment of

800 Euro and a specific investment 1200 Euro/m3.

A.3.8 Solar thermal

Solar thermal is modeled as Source/Sink object with a time dependent heat gener-

ation, as introduced in Section 3.3.5. The different cost assumptions of the literature

are shown in Figure A.13.

Figure A.13: Investment cost of solar thermal for different capacities based on

literature data, along with the considered cost of this work.

Cost given in Euro/kWth are converted with energy density of 650 W/m2 [Lauinger

et al., 2016] to Euro/m2. While the cost data of Lindberg et al. [2016a] and Streblow

and Ansorge [2017] align well, the other cost data is inconsistent. The overestima-

tion of Comodi et al. [2014] and Lauinger et al. [2016] is probably related to lack

of an economy of scale since the values fit for small scales below 10 m2. Schütz

et al. [2017a] on the other hand underestimate the cost by far which is probably

again related to a disregard of the installation costs. This work estimates the cost

with 4000 Euro fix and 350 Euro/m2 specific investment and does not consider

significant reductions for the future.

A.3.9 Pellet boiler

The pellet boiler is modeled as Transformer with a constant efficiency, equivalent

to the gas and oil boiler in Section A.3.5
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Figure A.14: Investment cost of the pellet boiler for different capacities based on

literature data, along with the considered cost of this work.

The different cost assumptions in the literature are shown in Figure A.13. The data

are relative consistent. This work aligns with the average and considers 10000

Euro fix investment and 300 Euro/kWth as specific investment.
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Appendix B

Aggregation of an archetype

building stock

Following chapter provides auxiliary information to Chapter 4. Section B.1 is clar-

ifies the reasons for the exclusion of socio-structural changes in this work. Sec-

tion B.2 gives additional data to the aggregation of the German building stock

and Section B.3 explains further the representation of single municipalities by the

archetype buildings.

B.1 Socio-structural changes

Some of the analyzed studies [Beuth, 2015; ISI, 2016] also consider socio-

structural changes such as a population decrease or an increase of the specific

demand for living area to derive the future demand for electricity and heat. Al-

though the chosen methodology would allow an incorporation into the archetype

aggregation by a spatial distribution of changing household sizes, it was decided to

exclude those.

This simplification has two reason:

1. No good data is available, since the different data sources are not consistent:

Many structural developments were not sufficiently predicted, as illustrated in

Figure B.1. While most of the older studies consider a population decrease,

an updated study by the Institut für Wirtschaft [IW, 2017] indicated a further

population increase until 2035 due to migration and an increasing birth rate.
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2. The results are more challenging to interpret with the inclusion of socio-

structural changes, since the technological and the socio-structural impact

have to be disaggregated again. The focus of this work is the impact of the

changing energy supply structure.

Therefore, it was instead assumed that the population is in the year 2050 the same

as in the Census year 2011 [Bundesamt, 2011].

Figure B.1: Historical values and prediction of the population development in Ger-

many based on different sources [DESTATIS, 2015; BBSR, 2015; IW, 2017; Bun-

desamt, 2011].

B.2 Aggregated attribute fitting

The weighting of the attributes in the aggregation influences the results, similar

as in a clustering approach. The weighting chosen for this work is introduced in

Table B.1.

Table B.1: Weighting of the attributes in the building aggregation.

Attribute Con-

struc-

tion

year

Apart-

ment

size

Sur-

round-

ing

Apart-

ments

Persons

per

ap.

Orien-

tation

Owner-

ship

Rebuild Photo-

voltaic

Supply

tech-

nol-

ogy

Longi-

tude

Lati-

tude

Weight 0.5 0.5 2 1 2 1 3 1 1 3 7 7

In general, attributes represented by the number of apartments and distributed

over many expressions are smaller weighted than attributes with a few expressions
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represented by the number of buildings. Otherwise, the attributes with many ex-

pressions would result in a high cumulative error and cause over-fitting of those,

while attributes with less expressions are neglected. An exception is the number

of persons or occupants per flat since their number is significant for the result. The

latitude and longitude have a relative high weighting because they are the only

continuous attributes in a range of 0 to 1. In consequence, their placement at 0.5

constitutes already at least an average fit of 0.5, although no spatial representation

exists. Therefore, they are higher weighted in order to compete with the categorical

attributes that have a distance evaluation of 1 in case that they are not met.

Figure B.2: Distribution of the considered building attributes in Germany and their

fitting by the archetype aggregation algorithm on an aggregated nationwide scale.
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Nevertheless, a further sensitivity analysis of the weighting factors could adjust

them better in future. Also their impact on the final results could be evaluated.

Figure B.2 illustrates the attribute fitting from an aggregated perspective over all

municipalities in Germany with the introduced weighting.
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B.3 Number of archetypes representing a municipality

Figure B.3 illustrates the representation of the city Köln by archetype buildings for

the case that in total 200 archetype buildings typify the building stock in the different

municipalities in Germany. All in all, 37 different archetype buildings represent the

137725 real buildings in Köln. The characterization of the first eight building types

is shown in Table B.2.

Figure B.3: Composition of archetype buildings representing Köln for the case of

200 archetype buildings and their related position in Germany.

Table B.2: Definition of the eight first archetype buildings that represent Köln for

the case of 200 building aggregations.

Con-

struction

year

Size

[m2]

Sur-

rounding

Persons

per

apart.

Orien-

tation

Owner-

ship

Rebuild Photo-

voltaic

Supply

technol-

ogy

Longitude

[°]

Latitude

[°]

Apart-

ments

Archetype 1 1919 99 Terraced 3 67.5 Rented False False Gas boiler 7.208223 50.771462 1

Archetype 2 1949 79 Terraced 2 45.0 Rented False False Oil boiler 7.437952 51.021117 2

Archetype 3 1969 139 Detached 2 0.0 Owned False False Gas boiler 7.284898 51.479579 1

Archetype 4 1959 99 Semi 5 22.5 Owned True False Gas boiler 8.461216 52.340127 1

Archetype 5 1959 59 Semi 1 0.0 Rented False False Gas boiler 8.202385 50.548362 16

Archetype 6 1919 119 Terraced 2 22.5 Owned False False Gas boiler 9.521178 51.990549 4

Archetype 7 1979 99 Detached 1 90.0 Owned False False Gas boiler 7.696921 50.158805 1

Archetype 8 2020 179 Terraced 2 90.0 Owned True False District

heating

7.317294 50.124494 1

It is striking that archetype building 1 is representing almost one quarter of the build-

ing types in Köln. Therefore, the supply structure of this single building significantly

impacts the aggregated results of the municipality.
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This influence is reduced with a higher number of archetype buildings, as shown in

Figure B.4 for the example of 800 archetype buildings. For this case, the most often

occurring archetype building in Köln represents only 11.4 % of the overall building

stock. In consequence, the result of a single building has a reduced impact on the

overall results.

Figure B.4: Composition of archetype buildings representing Köln for the case of

800 archetype buildings and their related position in Germany.

Therefore, higher numbers of archetype buildings make the results on a municipality

level more robust and stable since a higher diversity of building types constitutes

the aggregated results. Nevertheless, the accuracy gain on for the aggregated

nationwide perspective is limited, as shown in Section 5.2.
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Appendix C

Scenario results for the German

residential building stock

Following Section provides auxiliary plots and data to the scenario results. The

detailed scenario descriptions and results are shown in Chapter 5. Section C.1

provides an aggregated flow chart for the Reference scenario. Section C.3 provides

all aggregated data for the Value Of sensitivity analysis. Section C.4 shows the

data for the sensitivity analysis of the gas price. The aggregated energy flows and

capacities of the zero GHG cases are shown in Section C.5. The accuracy gain by

using more archetype buildings to predict the regional load change is illustrated in

Section C.2.

C.1 Reference scenario

Figure C.1 shows a Sankey-diagram of the nationwide energy flows for the Refer-

ence scenario. It is calculated with 200 archetype buildings for the Test Reference

Year.

While most of the energy flows and demands align with the final energy demands by

the AGEB [2017], solar thermal and photovoltaic are underestimated although their

existence was forced into the solution space. Many solar thermal and photovoltaic

instances are scaled to zero in the optimization since their specific cost are too high

such that they cannot amortize themselves.

This is mainly constituted by the single cost, energy price and feed-in tariff as-
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Figure C.1: Aggregated energy flows between the technologies for the Reference

scenario.

sumptions considered in this work. In case that also historic market environments,

including historic feed-in tariffs and historic technology prices, would be modeled,

also past years with high residential photovoltaic deployment could be better re-

spected in the model in future.
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C.2 Load change predicted with different numbers of

archetype buildings

The majority of the scenario cases in this work considered 200 archetype buildings

since they provide a sufficient accuracy for an aggregated nationwide perspective,

as shown in the validation in Section 5.2.1. Nevertheless, such a number results in

an over-representation of single building types in a municipality, as shown in Sec-

tion B.3. Therefore, regional obstacles occur regarding the predicted load change.

Figure C.2 shows the load change from the Reference to the Min Cost scenario

in 2050, predicted with 200 archetype buildings. Figure C.3 shows the equivalent

results predicted with 800 archetype buildings.
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Figure C.2: Spatial change of the peak load, the cumulative positive demand, and

the feed-in from the Reference scenario to the Min Cost scenario and predicted

with 200 archetype buildings.

In general, the differences of the changing load between rural and urban areas are

in a similar magnitude with 200 archetype buildings and 800 archetype buildings.

Nevertheless, the load change in the rural regions Rhineland-Palatinate and Saar-

land stand out for the case of 200 archetype buildings, although no major structural

differences exist in comparison to other regions. This is different for the case of

800 archetype buildings where an almost uniform load change in the rural regions

results. Instead, a stronger difference for the feed-in between north and south Ger-

many is recognizable due to the different solar irradiation. Therefore, the results
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generated by 800 archetype buildings seem more plausible and indicate that more

archetype buildings increase the accuracy of the overall load prediction on munici-

pality level.
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Figure C.3: Spatial change of the peak load, the cumulative positive demand, and

the feed-in from the Reference scenario to the Min Cost scenario and predicted

with 800 archetype buildings.

Thus, it is recommended to use at least 800 archetype buildings for a future cou-

pling with grid models. Although this increases the computational load, the paral-

lelized implementation of the model allows the usage of high performance comput-

ers. In consequence, even higher numbers of archetype buildings can be used in

future in case of available computational resources.
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C.3 Value of analysis

Following section provides additional information for the Value of analysis. It is

described in detail in Section 5.3.3.

Figure C.4 shows the aggregated investment costs for the different cases.

Figure C.4: Total investments of the Min Cost scenario and the resulting invest-

ments for the cases with a constrained solution space.

The resulting aggregated and sorted grid loads of the different cases are illustrated

in Figure C.5.

Further, the aggregated annual energy flows between the different considered sys-

tem components are listed in Table C.1.

Table C.2 shows the aggregated installed capacities for all residential buildings for

the different sensitivity cases.
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Table C.1: Aggregated energy flows [TWh/a] between the different technologies for

Value of analysis.

Min No No No No No Forced

Cost Gas supply Fuel cell Photovoltaic Heat pump refurbishment refurbishment

AC Node to Battery 5.2 2.0 3.7 0.0 5.1 6.1 5.2

AC Node to Building 112.8 112.8 112.8 112.8 112.8 112.8 112.8

AC Node to Electric heater 40.8 56.1 43.3 4.6 48.1 45.0 40.0

AC Node to Heat pump 34.3 26.9 16.2 24.6 0.0 50.1 21.0

AC Node to Hot water 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Battery to AC Node 4.7 1.8 3.3 0.0 4.6 5.5 4.7

CHP to AC Node 0.0 0.0 0.2 0.0 0.0 0.0 0.0

Cool supply to Building 19.8 21.4 19.6 19.0 18.5 29.0 31.6

Electricity supply to AC Node 51.5 100.5 84.7 63.5 57.7 47.3 52.7

Fuel cell to AC Node 53.9 0.0 0.0 85.3 20.1 69.1 45.7

Gas supply to CHP 0.0 0.0 0.7 0.0 0.0 0.0 0.0

Gas supply to Fuel cell 103.7 0.0 0.0 164.1 38.6 132.9 87.9

Gas supply to Gas boiler 68.7 0.0 91.2 121.6 226.6 26.8 65.7

HP Tarif to Heat pump 20.4 46.2 40.2 17.4 0.0 42.1 10.5

Log supply to Fire place 21.2 19.4 23.0 23.6 51.4 21.3 28.8

Pellet supply to Pellet boiler 0.0 10.3 0.0 0.0 3.1 0.0 0.0

Renewable gas to Gas boiler 0.0 8.7 0.0 0.0 0.0 0.0 0.0

Heat pump to Building 225.1 296.5 231.0 169.5 0.0 363.9 126.7

CHP to HNode 0.0 0.0 0.4 0.0 0.0 0.0 0.0

District heating to HNode 0.0 7.9 0.8 0.0 15.0 0.0 0.0

Electric heater to HNode 40.0 55.0 42.5 4.5 47.1 44.1 39.2

Fire place to HNode 17.6 16.1 19.1 19.6 42.7 17.7 23.9

Fuel cell to HNode 34.2 0.0 0.0 54.2 12.7 43.9 29.0

Gas boiler to HNode 66.0 8.3 87.6 116.7 217.5 25.7 63.1

HNode to Building 84.7 23.4 78.1 123.3 265.8 57.4 82.4

HNode to Hot water 69.2 69.2 69.2 69.2 69.2 69.2 69.2

Pellet boiler to HNode 0.0 9.3 0.0 0.0 2.8 0.0 0.0

HNode to Heat storage 54.5 41.8 38.3 77.2 52.2 59.6 52.9

Heat storage to HNode 50.5 37.8 35.2 74.5 49.2 54.8 49.3

Photovoltaic to AC Node 89.7 102.4 94.7 0.0 90.4 98.9 82.7

Photovoltaic to FiTPV 24.1 33.9 26.4 0.0 19.2 27.3 20.7

Solar thermal to HNode 0.1 0.0 0.0 0.1 0.1 0.0 0.0

Table C.2: Aggregated installed capacities of the different technologies for the

Value of analysis.

Min No No No No No Forced

Cost Gas supply Fuel cell Photovoltaic Heat pump refurbishment refurbishment

Gas boiler [GWth] 36.6 5.1 47.6 83.9 111.9 14.7 36.3

Oil boiler [GWth] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CHP [GWel] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

District heating [GWth] 0.0 7.5 0.9 0.0 13.1 0.0 0.0

Heat storage [GWhth] 215.6 291.4 216.6 63.4 173.9 265.4 188.6

Heat pump [GWth] 60.4 83.1 60.4 47.0 0.0 95.5 34.6

Electric heater [GWth] 99.7 97.1 90.3 83.6 75.4 121.0 84.4

Solar thermal [GWth] 0.2 0.0 0.0 0.2 0.2 0.0 0.0

Pellet boiler [GWth] 0.0 2.4 0.0 0.0 0.8 0.0 0.0

Battery [GWhel] 16.9 7.1 12.8 0.0 17.1 20.0 17.4

Fuel cell [GWel] 12.7 0.0 0.0 14.5 5.1 16.9 10.7

Photovoltaic [GWel] 133.4 160.3 142.3 0.0 127.8 147.6 121.0
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Figure C.5: Grid load of the Min Cost scenario and the grid loads for the cases

with a constrained solution space.
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C.4 Sensitivity to the gas price

Following section provides additional information to the sensitivity analysis of the

gas price. It is described in detail in Section 5.3.3.

Figure C.6 shows the aggregated investment costs for the different gas prices.

Figure C.6: Total investment cost of the Min Cost scenario and the total investment

cost for different considered gas prices.

The resulting aggregated and sorted grid loads resulting for different gas prices are

illustrated in Figure C.7.

Table C.3 shows the aggregated installed capacities for all residential buildings for

the different sensitivity cases.

Further, the aggregated annual energy flows between the different considered sys-

tem components are listed in Table C.4.
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Figure C.7: Sorted electricity grid load for Min Cost scenario and the electricity

grid load for the cases with different considered gas prices.

Table C.3: Aggregated installed capacities of the different technologies for the gas

price variation.

Gas price [Euro/kWh] 0.01 0.025 0.05 0.075 Min Cost 0.1 0.125 0.15 0.2

Gas boiler [GWth] 124.9 144.0 109.8 77.3 36.6 28.9 9.1 2.2 0.0

District heating [GWth] 0.0 0.0 0.0 0.0 0.0 0.0 6.4 7.8 7.8

Heat storage [GWhth] 10.3 10.0 49.0 103.8 215.6 233.2 282.7 297.5 298.4

Heat pump [GWth] 0.0 1.0 27.8 42.0 60.4 65.9 80.5 83.5 83.4

Electric heater [GWth] 111.7 87.5 78.8 87.8 99.7 100.3 97.7 98.6 99.0

Pellet boiler [GWth] 0.0 0.0 0.0 0.0 0.0 0.0 1.5 3.0 3.8

Battery [GWhel] 32.3 22.3 8.9 11.8 16.9 17.0 7.3 7.2 9.3

Fuel cell [GWel] 33.1 25.1 21.3 18.4 12.7 10.7 0.9 0.0 0.0

Photovoltaic [GWel] 3.7 9.2 41.8 92.7 133.4 140.6 159.2 161.6 163.4
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Table C.4: Aggregated energy flows [TWh/a] between the different technologies for

the gas price variation.

Gas price [Euro/kWh] 0.01 0.025 0.05 0.075 Min Cost 0.1 0.125 0.15 0.2

AC Node to Battery 5.2 8.4 5.6 2.2 3.8 5.2 2.0 2.0 2.6

AC Node to Building 112.8 112.8 112.8 112.8 112.8 112.8 112.8 112.8 112.8

AC Node to Electric heater 40.8 28.1 14.5 17.5 25.7 44.0 55.1 58.8 60.9

AC Node to Heat pump 34.3 0.0 1.1 26.2 34.0 31.3 26.1 26.6 26.4

AC Node to Hot water 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Battery to AC Node 4.7 7.6 5.0 2.0 3.4 4.7 1.8 1.8 2.3

Cool supply to Building 19.8 28.8 26.4 22.9 20.6 19.9 20.9 21.3 21.4

Electricity supply to AC Node 51.5 15.6 21.9 37.7 41.0 54.3 94.2 102.4 103.5

Fuel cell to AC Node 53.9 130.7 107.6 96.9 73.6 47.6 4.9 0.0 0.0

Gas supply to Fuel cell 103.7 251.3 207.0 186.3 141.6 91.5 9.4 0.0 0.0

Gas supply to Gas boiler 68.7 388.7 382.9 215.8 147.1 53.5 15.8 4.0 0.0

HP Tarif to Heat pump 20.4 0.0 0.0 0.2 5.6 27.7 45.2 46.6 46.7

Log supply to Fire place 21.2 0.5 0.5 2.6 6.4 21.2 19.8 19.4 19.4

Pellet supply to Pellet boiler 0.0 0.0 0.0 0.0 0.0 0.0 6.4 12.0 14.2

Heat pump to Building 225.1 0.0 4.6 108.9 161.2 242.0 289.5 296.6 296.5

District heating to HNode 0.0 0.0 0.0 0.0 0.0 0.0 7.6 8.1 8.1

Electric heater to HNode 40.0 27.6 14.2 17.1 25.2 43.1 54.0 57.6 59.7

Fire place to HNode 17.6 0.4 0.4 2.2 5.3 17.6 16.5 16.1 16.1

Fuel cell to HNode 34.2 82.9 68.3 61.5 46.7 30.2 3.1 0.0 0.0

Gas boiler to HNode 66.0 373.1 367.5 207.2 141.3 51.4 15.2 3.8 0.0

HNode to Building 84.7 407.8 375.5 215.7 146.8 69.1 29.0 23.2 23.4

HNode to Hot water 69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.2

Pellet boiler to HNode 0.0 0.0 0.0 0.0 0.0 0.0 5.8 10.8 12.7

HNode to Heat storage 54.5 354.4 282.9 107.6 45.3 55.1 42.6 42.0 41.6

Heat storage to HNode 50.5 347.3 277.1 104.5 42.7 50.9 38.5 37.8 37.4

Photovoltaic to AC Node 89.7 2.2 6.2 28.9 65.1 93.6 101.9 102.8 103.6

Photovoltaic to FiTPV 24.1 1.2 2.3 7.5 14.5 26.3 33.4 34.6 35.1

Solar thermal to HNode 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
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C.5 Zero GHG

The aggregated installed capacities of the whole building stock for the three Zero

GHG cases are listed in Table C.5

Table C.5: Aggregated installed capacities of the different technologies for the Zero

GHG cases.

Self-sufficiency Net zero emission Renewable grid

Gas boiler [GWth] 7.9 7.4 6.1

Heat storage [GWhth] 292.3 265.9 295.1

Heat pump [GWth] 68.0 78.5 85.1

Electric heater [GWth] 108.2 98.4 97.9

Solar thermal [GWth] 0.3 0.3 0.0

Pellet boiler [GWth] 0.0 0.4 2.4

Battery [GWhel] 145.1 44.3 7.0

Fuel cell [GWel] 34.5 7.7 0.0

Photovoltaic [GWel] 180.5 295.2 160.9

Further, the aggregated annual energy flows between the different considered sys-

tem components are listed in Table C.6.
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Table C.6: Aggregated energy flows [TWh/a] between the different technologies for

the Zero GHG cases.

Self-sufficiency Net zero emission Renewable grid

AC Node to Battery 34.4 13.3 2.0

AC Node to Building 112.8 112.8 112.8

AC Node to Electric heater 41.5 54.6 56.2

AC Node to Heat pump 58.2 42.1 27.3

AC Node to Hot water 6.8 6.8 6.8

Battery to AC Node 31.0 12.0 1.8

Electricity supply to AC Node 0.3 60.5 100.6

Fuel cell to AC Node 101.4 31.7 0.0

HP Tarif to Heat pump 0.2 23.2 47.6

Log supply to Fire place 19.1 23.7 19.4

Pellet supply to Pellet boiler 0.0 1.3 10.2

Renewable gas to Fuel cell 195.0 60.9 0.0

Renewable gas to Gas boiler 7.4 12.7 10.5

Heat pump to Building 243.9 269.3 303.6

Electric heater to HNode 40.7 53.5 55.1

Fire place to HNode 15.8 19.7 16.1

Fuel cell to HNode 64.4 20.1 0.0

Gas boiler to HNode 7.1 12.2 10.0

HNode to Building 53.8 33.7 17.2

HNode to Hot water 69.2 69.2 69.2

Pellet boiler to HNode 0.0 1.2 9.2

HNode to Heat storage 66.0 47.2 42.5

Heat storage to HNode 60.8 43.2 38.4

Solar thermal to HNode 0.1 0.1 0.0

Photovoltaic to AC Node 120.9 125.4 102.8

Photovoltaic to FiTPV 32.3 116.7 34.0
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Schlachtberger, D. P., Brown, T., Schäfer, M., Schramm, S., and Greiner, M. Cost

optimal scenarios of a future highly renewable European electricity system Ex-

ploring the influence of weather data, cost parameters and policy constraints.

arXiv, 2018. doi: arXiv:1803.09711.



210 Bibliography

Schleich, J., Gassmann, X., Faure, C., and Meissner, T. Making the implicit explicit:

A look inside the implicit discount rate. Energy Policy, 97:321–331, 2016. ISSN

03014215. doi: 10.1016/j.enpol.2016.07.044.

Schmidt, O., Hawkes, A., Gambhir, A., and Staffell, I. The future cost of electrical

energy storage based on experience rates. Nature Energy, 6:17110, 2017. ISSN

2058-7546. doi: 10.1038/nenergy.2017.110.
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