| Hauptseite > Publikationsdatenbank > Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint > print |
| 001 | 858679 | ||
| 005 | 20210130000041.0 | ||
| 024 | 7 | _ | |a 10.1021/acsnano.8b04125 |2 doi |
| 024 | 7 | _ | |a 1936-0851 |2 ISSN |
| 024 | 7 | _ | |a 1936-086X |2 ISSN |
| 024 | 7 | _ | |a 2128/20974 |2 Handle |
| 024 | 7 | _ | |a pmid:30004663 |2 pmid |
| 024 | 7 | _ | |a WOS:000443525600014 |2 WOS |
| 024 | 7 | _ | |a altmetric:45297480 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-07524 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Senkovskiy, Boris V. |0 0000-0003-1443-6780 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint |
| 260 | _ | _ | |a Washington, DC |c 2018 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552579058_30252 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We investigate the electronic and vibrational properties of bottom-up synthesized aligned armchair graphene nanoribbons of N = 7 carbon atoms width periodically doped by substitutional boron atoms (B-7AGNRs). Using angle-resolved photoemission spectroscopy and density functional theory calculations, we find that the dopant-derived valence and conduction band states are notably hybridized with electronic states of Au substrate and spread in energy. The interaction with the substrate leaves the bands with pure carbon character rather unperturbed. This results in an identical effective mass of ≈0.2 m0 for the next-highest valence band compared with pristine 7AGNRs. We probe the phonons of B-7AGNRs by ultrahigh-vacuum (UHV) Raman spectroscopy and reveal the existence of characteristic splitting and red shifts in Raman modes due to the presence of substitutional boron atoms. Comparing the Raman spectra for three visible lasers (red, green, and blue), we find that interaction with gold suppresses the Raman signal from B-7AGNRs and the energy of the green laser (2.33 eV) is closer to the resonant E22 transition. The hybridized electronic structure of the B-7AGNR–Au interface is expected to improve electrical characteristics of contacts between graphene nanoribbon and Au. The Raman fingerprint allows the easy identification of B-7AGNRs, which is particularly useful for device fabrication. |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
| 536 | _ | _ | |a Hybrid 2D-based interfaces from first principles (jias1e_20180501) |0 G:(DE-Juel1)jias1e_20180501 |c jias1e_20180501 |f Hybrid 2D-based interfaces from first principles |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Usachov, Dmitry Yu. |0 0000-0003-0390-0007 |b 1 |
| 700 | 1 | _ | |a Fedorov, Alexander V. |0 0000-0002-9228-7082 |b 2 |
| 700 | 1 | _ | |a Marangoni, Tomas |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Haberer, Danny |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Tresca, Cesare |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Profeta, Gianni |0 0000-0002-0535-7573 |b 6 |
| 700 | 1 | _ | |a Caciuc, Vasile |0 P:(DE-Juel1)130583 |b 7 |
| 700 | 1 | _ | |a Tsukamoto, Shigeru |0 P:(DE-Juel1)131010 |b 8 |
| 700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 9 |u fzj |
| 700 | 1 | _ | |a Ehlen, Niels |0 0000-0002-8581-8359 |b 10 |
| 700 | 1 | _ | |a Chen, Chaoyu |0 0000-0002-3930-8294 |b 11 |
| 700 | 1 | _ | |a Avila, José |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Asensio, Maria C. |0 0000-0001-8252-7655 |b 13 |
| 700 | 1 | _ | |a Varykhalov, Andrei Yu. |0 P:(DE-HGF)0 |b 14 |
| 700 | 1 | _ | |a Nefedov, Alexei |0 0000-0003-2771-6386 |b 15 |
| 700 | 1 | _ | |a Wöll, Christof |0 0000-0003-1078-3304 |b 16 |
| 700 | 1 | _ | |a Kim, Timur K. |0 0000-0003-4201-4462 |b 17 |
| 700 | 1 | _ | |a Hoesch, Moritz |0 0000-0002-0114-2110 |b 18 |
| 700 | 1 | _ | |a Fischer, Felix R. |0 0000-0003-4723-3111 |b 19 |
| 700 | 1 | _ | |a Grüneis, Alexander |0 P:(DE-HGF)0 |b 20 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsnano.8b04125 |g Vol. 12, no. 8, p. 7571 - 7582 |0 PERI:(DE-600)2383064-5 |n 8 |p 7571 - 7582 |t ACS nano |v 12 |y 2018 |x 1936-086X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/858679/files/acsnano.8b04125.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/858679/files/acsnano.8b04125.pdf?subformat=pdfa |x pdfa |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/858679/files/boris17-boron9.pdf |y Published on 2018-07-13. Available in OpenAccess from 2019-07-13. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/858679/files/boris17-boron9.pdf?subformat=pdfa |x pdfa |y Published on 2018-07-13. Available in OpenAccess from 2019-07-13. |
| 909 | C | O | |o oai:juser.fz-juelich.de:858679 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130583 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131010 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130513 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS NANO : 2017 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ACS NANO : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|