000858680 001__ 858680
000858680 005__ 20210130000042.0
000858680 0247_ $$2doi$$a10.1103/PhysRevMaterials.2.084001
000858680 0247_ $$2Handle$$a2128/20975
000858680 0247_ $$2WOS$$aWOS:000440830800001
000858680 037__ $$aFZJ-2018-07525
000858680 082__ $$a530
000858680 1001_ $$0P:(DE-Juel1)130583$$aCaciuc, Vasile$$b0
000858680 245__ $$aMagnetic properties of transition metal dichalcogenides-Fe/Ir(111) interfaces from first principles
000858680 260__ $$aCollege Park, MD$$bAPS$$c2018
000858680 3367_ $$2DRIVER$$aarticle
000858680 3367_ $$2DataCite$$aOutput Types/Journal article
000858680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552578991_31636
000858680 3367_ $$2BibTeX$$aARTICLE
000858680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858680 3367_ $$00$$2EndNote$$aJournal Article
000858680 520__ $$aIn our density functional theory study we systematically explored how the interaction between magnetic and nonmagnetic transition metal dichalcogenide (TMD) monolayers and a magnetic Fe/Ir(111) electrode reciprocally modifies their electronic and magnetic properties. From an electronic point of view, all investigated semiconductor TMDs become metallic upon adsorption on the Fe/Ir(111) substrate related to a rather strong TMD-Fe/Ir(111) hybridization. On the other hand, from a magnetic point of view, the TMD-surface hybridization leads to a spin-imbalanced electronic structure of such hybrid systems with system-specific features. Additionally, the calculated exchange coupling constants for the Fe surface atoms evidenced a stronger magnetic interaction upon TMD adsorption as compared to the case of the clean surface. This observation indicates the presence of a magnetic hardening of the exchange coupling constants similarly to the case of molecular systems on magnetic surfaces, which emphasizes the generality of this adsorbate-induced effect on magnetic substrates.
000858680 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000858680 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000858680 536__ $$0G:(DE-Juel1)jias10_20161101$$aStructural, electronic and magnetic properties of hybrid interfaces (jias10_20161101)$$cjias10_20161101$$fStructural, electronic and magnetic properties of hybrid interfaces$$x2
000858680 536__ $$0G:(DE-Juel1)jias1e_20180501$$aHybrid 2D-based interfaces from first principles (jias1e_20180501)$$cjias1e_20180501$$fHybrid 2D-based interfaces from first principles$$x3
000858680 588__ $$aDataset connected to CrossRef
000858680 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b1$$eCorresponding author
000858680 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
000858680 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.2.084001$$gVol. 2, no. 8, p. 084001$$n8$$p084001$$tPhysical review materials$$v2$$x2475-9953$$y2018
000858680 8564_ $$uhttps://juser.fz-juelich.de/record/858680/files/PhysRevMaterials.2.084001.pdf$$yOpenAccess
000858680 8564_ $$uhttps://juser.fz-juelich.de/record/858680/files/PhysRevMaterials.2.084001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858680 909CO $$ooai:juser.fz-juelich.de:858680$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130583$$aForschungszentrum Jülich$$b0$$kFZJ
000858680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b1$$kFZJ
000858680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
000858680 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000858680 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000858680 9141_ $$y2018
000858680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858680 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000858680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000858680 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858680 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858680 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858680 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858680 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000858680 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000858680 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000858680 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000858680 980__ $$ajournal
000858680 980__ $$aVDB
000858680 980__ $$aI:(DE-Juel1)IAS-1-20090406
000858680 980__ $$aI:(DE-Juel1)PGI-1-20110106
000858680 980__ $$aI:(DE-82)080009_20140620
000858680 980__ $$aI:(DE-82)080012_20140620
000858680 980__ $$aUNRESTRICTED
000858680 9801_ $$aFullTexts