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A complex band structure describes the dispersion relation not only of propagating bulk states but also of
evanescent ones, both of which are together referred to as generalized Bloch states and are important for
understanding the electronic nature of solid surfaces and interfaces. On the basis of the real-space finite-
difference formalism within the framework of the density functional theory, we formulate the Kohn-Sham
equation for generalized Bloch wave functions as a generalized eigenvalue problem without using any Green’s
function matrix. By exploiting the sparseness of the coefficient matrices and using the Sakurai-Sugiura projection
method, we efficiently solve the derived eigenvalue problem for the propagating and slowly decaying/growing
evanescent waves, which are essential for describing the physics of surface/interface states. The accuracy of
the generalized Bloch states and the computational efficiency of the present method in solving the eigenvalue
problem obtained are compared with those by other methods using the Green’s function matrix. In addition,
we propose two computational techniques to be combined with the Sakurai-Sugiura projection method and
achieve further improvement in the accuracy and efficiency. Complex band structures are calculated with the
present method for single- and multiwall carbon nanotubes, and the interwall hybridization and branch points of
evanescent electronic states observed in the imaginary parts of the band structures are also discussed.
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I. INTRODUCTION

Generalized Bloch states are generalizations of the propa-

gating Bloch states constituting the band structure of a crys-
talline material with translational symmetry and a periodic
potential, and include not only the propagating states but also
evanescent states that decay and grow in magnitude from one
unit cell to the next one. Although a propagating Bloch state
is characterized by a real wave number, an evanescent state
is characterized by a complex wave number. A set of the
evanescent states constitutes the complex band structure of
a surface or an interface [1], which breaks the translational
symmetry in the direction perpendicular to the surface or
interface plane. More specifically, the evanescent Bloch states
are needed for describing the faint tail of the wave function
of a surface or an interface state, which is located within a
few layers of the surface or interface and decays depth-wise
in the bulk solid [2]. Indeed, the complex band structures and
generalized Bloch states are extensively used in various fields
of study, such as heterostructures [3], electron transport [4–6],
as well as surface and interface [7].

Many aspects have been made to determine the generalized
Bloch states on the basis of the density functional theory
[8]. In particular, within the frameworks of the tight-binding
formalism [9] and real-space finite-difference formalism [10],
it can be assumed that the interaction from second-nearest-
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neighboring unit cells is negligibly small in comparison with
that from neighboring ones. Therefore a generalized Bloch
wave function ψ with an energy ε satisfies the following
three-term one-particle Schrödinger equation [11]:

−H(i−1,i)ψ (i−1) + (ε − H(i))ψ (i) − H(i,i+1)ψ (i+1) = 0,

(1)

where H(i) denotes the Hamiltonian of the ith unit cell (see
Fig. 1). H(i−1,i) and H(i,i+1) are the Hamiltonian representing
the interaction between the nearest-neighboring unit cells and
are Hermitian conjugate to each other. The matrix elements
of H(i), H(i−1,i), and H(i,i+1) are given by − 1

2
d2

dr2 + V , where
the first and second terms denote the kinetic and potential
energies, respectively. According to the generalized Bloch
theorem [1], the generalized Bloch wave functions in the ith
and j th unit cells, ψ (i) and ψ (j ), are related by a complex
Bloch phase factor λ, as

ψ (j ) = λj−iψ (i). (2)

λ is defined as λ = exp(ikL), where k and L are the complex

wave number of the Bloch state and the length of the unit cell,
respectively. In the case of |λ| = 1, i.e., k has zero imaginary
part and is a real number, the generalized Bloch state is a prop-
agating one. On the other hand, if |λ| �= 1, i.e., k has a nonzero
imaginary part and is a pure imaginary or complex number,
the generalized Bloch state is an evanescent one. Note that the
decay and growth of the evanescent Bloch states become very
sharp when |λ| ≪ 1 or 1 ≪ |λ|. The rapid decay and growth
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FIG. 1. Schematic representation of crystalline solid with trans-
lational symmetry. The unit cells are indexed as . . . , i − 1, i, i +

1, . . . . The matrix H(i ) is the Hamiltonian block corresponding to
the ith unit cell, and the matrix B represent the interaction between
the neighboring unit cells. The curves with arrows represent a
propagating Bloch wave and decaying evanescent Bloch wave. The
wave-function vector ψ is also partitioned by the unit cells.

of evanescent wave functions are known to frequently cause
intolerable numerical instability in computations [12].

Stable, accurate, and efficient methods for solving the
Schrödinger equation (1) for ψ under the generalized Bloch
condition (2) have been extensively studied [12–17]. In 1991,
Ando combined Eqs. (1) and (2) and formulated a standard
eigenvalue problem for ψ within the framework of the tight-
binding formalism [13]. In 2004, Khomyakov and Brocks
rewrote the Ando’s formulation based on the real-space finite-
difference formalism [10] within the framework of the density
functional theory [8] and proposed solving a generalized
eigenvalue problem for ψ [14]. The eigenvalue problem
represented by a small number of basis functions, such as
the tight-binding formalism, can be directly solved within a
reasonable time. On the other hand, the eigenvalue problem
based on the real-space finite-difference formalism has a large
degree of freedom; hence, it is difficult to solve directly as
it is. Khomyakov and Brocks exploited the sparseness of the
interaction matrices H(i−1,i) and H(i,i+1), and succeeded in re-
ducing the dimension of the generalized eigenvalue problem.
Fujimoto and Hirose also reduced the dimension of the gener-
alized eigenvalue problem in a different way, and proposed the
overbridging boundary matching (OBM) method, which first
determines the boundary conditions of a generalized Bloch
wave function by solving the reduced generalized eigenvalue
problem, and then solves the Schrödinger-like Kohn-Sham
equation for the generalized Bloch state under the boundary
conditions obtained (for more details, see Refs. [12,15]). Both
Khomyakov and Brocks and Fujimoto and Hirose achieved
large reductions in the computational cost for calculating ψ .
In 2014, we improved upon the OBM method to further
reduce the dimension of the generalized eigenvalue problem
to a requisite minimum using singular-value decomposition
of the interaction matrices H(i−1,i) and H(i,i+1) [16]. These
methods are advantageous in terms of the dimensions of
the eigenvalue problems to be solved; however, none avoid
calculating the inverse of the Hamiltonian matrix H(i), i.e.,

the Green’s function matrix. This increase the computational
cost in constructing the coefficient matrices of the generalized
eigenvalue problems to be solved, despite reducing the com-
putational cost in solving the eigenvalue problems.

The solutions of the eigenvalue problems, i.e., ψ , are
known to contain rapidly decaying/growing evanescent
waves, and the steep evanescent waves can be discarded
because some are nonphysical and the others have only negli-
gibly small contribution to the tails of the surface/interface
states and scattering wave functions. In other words, only
propagating waves and slowly decaying/growing evanescent
waves are essential in practical calculations, e.g., the calcu-
lation of surface and interface states, and the construction
of the self-energy of semi-infinite systems.1 From such a
point of view, based on the tight-binding formalism, Sørensen
et al. derived a small-dimensional eigenvalue problem only
for the necessary generalized Bloch states by using the
Arnoldi procedure, which is a Krylov subspace method [18].
More specifically, the quadratic eigenvalue problem with
respect to λ,

−H(i−1,i)ψ (i−1) + λ(ε − H(i))ψ (i−1) − λ2H(i,i+1) ψ (i−1)=0,

(3)

which is straightforwardly derived by substituting the Eq. (2)
into Eq. (1), is transformed into a smaller quadratic eigenvalue
problem with the dimension equal to the number of necessary
generalized Bloch wave functions. Recently, we proved that
only from propagating waves and slowly decaying/growing
evanescent waves one can obtain the correct self-energy ma-
trices of semi-infinite systems [19].

We have also proposed the improvement upon the OBM
method for reducing the dimension of the generalized eigen-
value problem to the number of necessary generalized Bloch
wave functions [16] by using the Sakurai-Sugiura projection
method [20]. The Sakurai-Sugiura projection method reduces
the dimension of an eigenvalue problem to the number of the
eigenvalues located in a specific domain of the complex plane.
Recently, we applied it to a quadratic eigenvalue problem (3)
represented in the real-space finite-difference formalism by
making use of the advantage of the Sakurai-Sugiura projection
method on the contour integral for sparse matrices [17,21,22].
The method for solving the quadratic eigenvalue problem
is clearly advantageous over the conventional OBM method
in terms of avoiding expensive computation of the Green’s
function matrix and treating sparse coefficient matrices. On
the other hand, the conventional OBM method has an ad-
vantage over the method for solving the quadratic eigenvalue
problem (3), because a linear eigenvalue problem is easier
than a nonlinear one. Moreover, more computational libraries

1The phrase “self-energy” is used not only in electron transport
theory but also in many body theory, for instance, in the GW ap-
proximation. In the work incorporating the GW approximation with
electron transport calculations [6], the phrase “self-energy” is used
to refer to “coupling/electrode self-energy” and “GW self-energy.”
For detailed description on how the phrase “self-energy” used in this
paper, see pp. 145–148 in Ref. [4].
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are available for linear eigenvalue problems than for nonlinear
ones2 [23].

In this paper, on the basis of the conventional OBM method
proposed in 2003 [12] and 2014 [16], we derive another gener-
alized eigenvalue problem for ψ , in which no Green’s function
matrix is used in constructing the coefficient matrices; there-
fore, the coefficient matrices are kept as sparse as the Hamil-
tonian matrix. The derived generalized eigenvalue problem is
numerically solved by using the Rayleigh-Ritz variation of the
Sakurai-Sugiura projection method [24], which is known to be
more accurate and robust [25] than the Hankel-matrix varia-
tion of the Sakurai-Sugiura projection method [20]. To solve
the generalized eigenvalue problem using the Sakurai-Sugiura
Rayleigh-Ritz method more accurately and efficiently, we
propose two computational techniques, which are combined
with the Sakurai-Sugiura method but have almost no impact
to the computational time. The computational accuracy and
efficiency of the present method are also evaluated in com-
parison with the method that solves a quadratic eigenvalue
problem for generalized Bloch states [17]. The real parts of
the complex band structures of single- and multiwall carbon
nanotubes obtained with the present method are confirmed
through comparison with those obtained with conventional
electronic structure calculations. Moreover, the penetration
length of the evanescent Bloch states of carbon nanotube is
discussed, and the interwall hybridization of the evanescent
Bloch states observed in the imaginary part of the complex
band structures of multiwall nanotubes is investigated and
discussed in terms of the spatial distribution of the evanescent
states at the branch point.

II. EIGENVALUE PROBLEM FOR GENERALIZED

BLOCH STATES

In this section, we first derive a generalized eigenvalue
problem for generalized Bloch states without using the
Green’s function. Then, we discuss the Sakurai-Sugiura pro-
jection method as a suitable eigensolver of the generalized
eigenvalue problem, and evaluate the computational cost for
solving the generalized eigenvalue problem with the Sakurai-
Sugiura method and those with the previously proposed meth-
ods. To overcome the problem on computational accuracy
originating the Sakurai-Sugiura projection method, we pro-
pose two techniques compensating the weakness, which are
referred to as the dividing-and-scaling technique and the in-
terchange technique throughout this paper. The computational
time of the present method is measured under several condi-
tions, and compared with those obtained by the previously
proposed methods. Finally, to confirm the validity of the
present method, we calculate the complex band structures of
carbon nanotubes, and compare the real parts of the band
structures with those obtained with other electronic structure
calculations based on the density functional theory.

2For example, the FEAST eigensolver is currently not capable of
treating nonlinear problems. See http://www.feast-solver.org/ for
more detail.

A. Derivation of generalized eigenvalue problem

The derivation of the generalized eigenvalue problem starts
with the Schrödinger equaiton (1). Since we treat a periodic
system with translational symmetry in the z direction, as
shown in Fig. 1, the Hamiltonian matrices of the respective
unit cells, εI − H(i) for i = −∞, . . . ,+∞, are identical, i.e.,
εI − H(i) = A for all i.The interaction matrices between the
nearest neighboring unit cells, H(i−1,i) and H(i,i+1), are also
independent of the index i, and are Hermitian conjugate to
each other, i.e., H(i,i−1) = [H(i−1,i)]† for all i. Note that the
superscript † denotes the conjugate transpose of a matrix.
Within the framework of the real-space finite-difference for-
malism, the interaction matrix H(i−1,i) is semilocal; hence, it
is expressed as a sparse matrix, which has nonzero entries only
at the bottom-left corner:

−H(i−1,i) =

[
0 0

B 0

]
. (4)

One can more easily see the sparseness of Eq. (1) by rewriting
it matrixwise:

(5)

Since nonzero entries of the submatrix B are localized around
the diagonal of the matrix on the left-hand side, the dimen-
sions of B are finite and are defined as MB × NB. We assume
that the spaces under the influence of B from the (i − 1)th
and (i + 1)th unit cells do not overlap each other in the ith
unit cell, as schematically represented in Fig. 1; i.e., MB + NB

is smaller than the dimension of the square submatrix A,
which is referred to as NA hereafter. Therefore the generalized
Bloch wave-function vector in the ith unit cell, ψ (i), can be
divided into three subvectors: the first NB entries, the last MB

entries, and the rest in the middle, as ψ
(i)
NB

, ψ
(i)
MB

, and ψ
(i)
mid,

respectively.
Extracting the row block corresponding to the ith unit

cell from Eq. (5) being infinite in dimension, we obtain the
following finite-dimensional equation for a generalized Bloch
wave function:

[
A

]




ψ
(i)
NB

ψ
(i)
mid

ψ
(i)
MB


 =




−B†ψ
(i−1)
MB

0

−Bψ
(i+1)
NB


, (6)
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where the terms containing B are moved to the right-hand
side. According to the generalized Bloch theorem with re-
spect to the neighboring unit cells, ψ (i+1) = λψ (i), the wave-
function subvectors of the (i − 1)th and (i + 1)th unit cells,
ψ

(i−1)
MB

and ψ
(i+1)
NB

, on the right-hand side, can be expressed
with λ and corresponding wave function subvectors of the ith
unit cell, ψ (i)

MB
and ψ

(i)
NB

, respectively. By the application of the
generalized Bloch theorem, Eq. (6) can be transformed into an
equation with respect to the wave-function vector only of the
ith unit cell:

[
A

]



ψ
(i)
NB

ψ
(i)
mid

ψ
(i)
MB


 =




−B† 1
λ
ψ

(i)
MB

0

−Bλψ
(i)
NB


. (7)

Multiplying the both sides of the first NB rows of the equation
above by λ and interchanging the left- and right-hand sides
of the first NB rows, we obtain the following generalized
eigenvalue problem for λ and ψ (i):

(8)
where the submatrix A1 is composed of the first NB rows of
A, and the rest of A is further divided into the submatrices
A2 and A3 such that A3 is composed of the last MB rows
of A. Hereafter, the coefficient matrices on the left- and
right-hand sides are referred to as �A and �B, respectively.
Note that the generalized eigenvalue problem (8) can be
further reduced in dimension by using a Green’s function
submatrix; the formulation is described in Appendix A. The
Hamiltonian matrices H(i) and H(i−1,i) and the coefficient
matrices �A and �B for a simple case are exemplified in
Appendix B.

B. Sakurai-Sugiura Rayleigh-Ritz method

As mentioned in Introduction, we generally do not need
all the eigenpair of the generalized eigenvalue problem (8)
but only some of the eigenpairs, whose eigenvalues lie in
a specific domain of the complex λ plane. For instance,
in electron transport calculations, in addition to propagating
Bloch waves, one needs evanescent Bloch waves decaying
slowly depth-wise in the semi-infinite electrodes, because
it is proved that the self-energy matrices of semi-infinite
electrodes are correctly calculated only from the propagating
waves and slowly decaying evanescent waves [19]. In other
words, we need only the eigenvalues just around the unit circle
on the complex λ plane, i.e., |λ| ∼ 1, and the eigenvectors
belonging to the eigenvalues. For such purpose, the Sakurai-
Sugiura projection method [20,24] is highly suitable as an
eigensolver. This method projects a function derived from an
original eigenvalue problem onto a subspace associated with
the eigenvalues located in a given domain of the complex
plane by performing the contour integral numerically along

the domain edge. According to the residue theorem, unnec-
essary eigenpairs are excluded from the newly generated
eigenvalue problem. The new eigenvalue problem is small in
dimension, and therefore, quickly solvable for the necessary
eigenpairs.

In the previously proposed OBM method [16], we have
adopted a variation of the Sakurai-Sugiura projection method,
which uses a couple of the Hankel matrices composed
of the moments of the function derived from an original
eigenvalue problem. It is known that the Sakurai-Sugiura
Hankel (SS-Hankel) method can be numerically unstable
because of explicit use of higher-order moments, and the
Hankel matrices become ill-conditioned if eigenvalues in
a given domain are close to each other [24,25]. To over-
come these drawbacks, another variation of the Sakurai-
Sugiura projection method using the Rayleigh-Ritz method
was developed. The Sakurai-Sugiura Rayleigh-Ritz (SS-RR)
method requires half the order of moment as the SS-Hankel
method, and is numerically stable even if eigenvalues are
degenerate or close to each other. For more details about
the SS-RR and SS-Hankel methods, see Appendix C. In
general, the phase factors of generalized Bloch states ex-
ist densely around the origin of the complex plane. There-
fore the SS-RR method is preferable to the SS-Hankel
method. Then, we examine the accuracy of the eigenpairs
obtained by solving Eq. (8) with the two variations of the
Sakurai-Sugiura projection method. Figures 2(a) and 2(b)
show the computational errors as a function of λ for (6,6) and
(8,0) carbon nanotubes, respectively. In these calculations,
to find the generalized Bloch states with λ in the range of
10−2 � |λ| � 102, we set an annular domain with the inner-
circle radius λmin = 10−2 and the outer-circle radius λmax =

102 on the complex plane. The parameters used in the error
evaluation are optimized to keep the computational cost equal.
Comparing the computational errors indicated with the open
and solid circles, one can easily see that the SS-RR method
improves the accuracy of the eigenpairs by three to four orders
of magnitude. It should be noted that the computational errors
are still large when the absolute value of the phase factor, |λ|,
is small. We address this problem in Sec. II D.

The computational errors indicated by the crosses in Fig. 2,
which are obtained by solving the nonlinear eigenvalue prob-
lem (3) with the SS-Hankel method, are at the same order as
or more than those indicated with the open circles obtained
by solving the generalized eigenvalue problem (8) with the
SS-Hankel method. One may expect that the computational
errors indicated by the crosses can be substantially reduced
by switching from the SS-Hankel method to the SS-RR
method. Nevertheless, the reduced eigenvalue problem ob-
tained from an original quadratic eigenvalue problem in the
SS-RR method is also quadratic. The nonlinear eigenvalue
problem is generally more expensive to solve than the gen-
eralized one even if the dimension is small; furthermore, there
are a few numerical computing libraries for solving quadratic
eigenvalue problems. In the light of the purpose of this paper,
we do not further discuss solving the quadratic eigenvalue
problem (3).

The most time-consuming part of the Sakurai-Sugiura
projection method is to calculate the moment vectors sl for
l = 0, 1, . . . , Nmom − 1, where Nmom denotes the number of
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Eq. (8) with SS-Hankel
Eq. (8) with SS-RR
Eq. (3) with SS-Hankel
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(b)  (8,0) carbon nanotube
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FIG. 2. Computational errors in solving eigenvalue problems for
generalized Bloch states of carbon nanotubes. Computational errors
are evaluated using the Euclidean norms of the residual vectors
r , which are obtained by substituting the computed eigenpair into
Eqs. (3) and (8). Eigenpairs are calculated using the SS-Hankel and
SS-RR methods. The number of sampling points for the numerical
contour integral and maximum order of moment used in the SS-RR
method, Nint and Nmom, are set to 32 and 16, respectively. The number
of right-hand-side vectors, Nrhs, is set to 128 for (6,6) and 56 for (8,0)
carbon nanotubes. The thick, normal, and thin dashed horizontal
lines represent the averages of the computational errors over the all
eigenpairs indicated by the crosses, solid circles, and open circles,
respectively.

the moments considered:

sl =
1

2π i

∮

C

zl (z�B − �A)−1
udz (9a)

≈
1

Nint

Nint∑

i

zl+1
i (zi�B − �A)−1

u. (9b)

In practical calculations, the contour integral in Eq. (9a) is
discretized and numerically performed according to Eq. (9b).
The integrand is evaluated at the discrete sampling points
zi (i = 1, 2, . . . , Nint) on the integral path through solving the
linear equation:

(zi�B − �A)xi = u. (10)

Here, the constant-term vector u can be chosen arbitrarily.
Note that within the scope of the present method, the sampling
points {zi} lie on the inner and outer circles of an annular
domain, i.e., either |zi | = λmin or |zi | = λmax is hold.

Now, let us consider to apply a shifted conjugate gradient
method [26] to solving Eq. (10) for further reduction of the
computational cost. Multiplying only the first NB rows of the
linear equations (10) by 1/zi , one obtains the following linear
equations:

(11)
where the subvectors uNB

and uMB
on the right-hand side

denote the first NB and last MB elements of u, respectively.
The rest of the elements of u compose the subvector umid.
Since A = εI − H(i) as defined in Sec. II A, ε appears only
in the diagonal elements of �(zi ). It is known that a Krylov
subspace spanned by the products of a matrix M and a vector
v, i.e., K(M, v) ≡ span{v, Mv, M2v, . . . }, is invariant with
respect to the addition of a scalar matrix σ I to M, i.e.,
K(M + σ I, v) = K(M, v). This means that once a Krylov
subspace is obtained by solving Eq. (11) at a single energy
ε using an iterating solver, it can be reused for solving
Eq. (11) at different energies ε′ �= ε. As a consequence of
exploiting the general property of the Krylov subspace, we
can omit expensive operations of matrix–vector products in
iterative solvers for second and subsequent reference energies,
and greatly reduce the computational cost for executing the
Sakurai-Sugiura projection method [21,27]. This allows us to
draw band structures denser in energy.

Within the framework of the real-space finite-difference
formalism, �(zi ) is sparse but non-Hermitian; therefore,
we choose the shifted biconjugated gradient (BiCG) method
[28,29] as the iterative linear-equation solver. It is known that
a BiCG solver solves not only the linear equation Qx1 = b1

but also Q†
x2 = b2 by default for any matrix Q [28]. From

this fact and the property of �(zi ), i.e., [�(zi )]† = �(1/z∗
i ),

it is seen that a BiCG solver solves Eq. (11) for two sampling
points za and zb = 1/z∗

a at once [21]. Note that the superscript
∗ denotes the complex conjugate of a scalar. When the inner
and outer radii of an annular domain satisfy λmax = 1/λmin,
one can simultaneously obtain two solution vectors x

in
i and

x
out
i , the former is for a sampling point on the inner circle

zin
i and the latter for the corresponding sampling point on
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the outer circle zout
i = 1/(zin

i )∗. Consequently, one only has
to explicitly solve Eq. (11) for the sampling points either
zin
i or zout

i . In the case that the computational framework is
implemented within the tight-binding and/or localized-basis
formalism, �(zi ) is rather dense. Therefore a direct diago-
nalization method, such as the LU decomposition, may be
advantageous in solving Eq. (11).

C. Computational cost

As mentioned in Sec. II A, the present formulation does
not refer to any Green’s function matrix, which is the in-
verse of the matrix in Eq. (5) and is generally expensive
to calculate. This is apparently advantageous in computing
generalized Bloch wave functions in comparison with other
methods that require a Green’s function matrix, e.g., pre-
viously proposed OBM method [12,16] and the methods
proposed by Khomyakov and Brocks [14] and Sørensen et al.

[18]. Although some of these methods derive and solve a
reduced eigenvalue problem instead of Eq. (8), the coeffi-
cient matrices treated in the previously proposed methods
are dense. On the other hand, Eq. (8) derived in Sec. II A is
advantageous in that coefficient matrices �A and �B are both
sparse because of adopting the real-space finite-difference
formalism.

In this subsection, we estimate the computational cost
for solving Eq. (8), and compare it with those of the OBM
methods proposed in Refs. [12,16]. In solving Eq. (8) with the
present method and the corresponding eigenvalue problems
with the previously proposed methods, we use the Sakurai-
Sugiura projection method [20,24]. Since the most time-
consuming part of the Sakurai-Sugiura projection method is
to solve linear equations at all sampling points on a domain
edge, we examine the computational cost for solving the linear
equations. As mentioned in Sec. II B, �(zi ) in Eq. (11) is
sparse; hence, we use a BiCG method for solving Eq. (11).
On the other hand, the generalized eigenvalue problems to be
solved with the previously proposed methods, i.e., Eq. (19)
in Ref. [12] and Eq. (32) in Ref. [16], have a couple of
dense coefficient matrices, and the coefficient matrix of the
linear equations to be solved in the Sakurai-Sugiura projection
method is also dense. Therefore we use the LU decomposition
for solving the linear equations for the previously proposed
methods. In practical computation, the block version of the
Sakurai-Sugiura projection method [24] is frequently used,
and it solves instead of Eq. (11) the linear equations with
multiple right-hand side vectors:

�(zi )Xi = U(zi ), (12)

where Xi = [xi,1, . . . , xi,Nrhs ], U(zi ) = [ui,1, . . . , ui,Nrhs ] and
Nrhs is the number of the column vectors. The computational
cost for solving Eq. (12) with an iterative method is propor-
tional not only to NA but also the number of iterations needed
until convergency, Niter, and Nrhs. On the other hand, the
computational cost for solving Eq. (12) with the LU decom-
position is proportional only to the cube of the dimension of
the linear equation. In Table I, the computational costs of the
most time-consuming part in the Sakurai-Sugiura projection
method for the present and previously proposed methods are

TABLE I. Estimated computational cost in solving linear equa-
tions derived from Eq. (8) of the present work, the nonlinear eigen-
value problem in Ref. [21], Eq. (19) of Ref. [12], and Eq. (32) of
Ref. [16]. NA represents the dimension of A. MB and NB represent
the numbers of rows and columns of B, respectively. Niter is the
averaged number of iterations needed until the solution vectors xi

of Eq. (12) converge with a CG method, and Nrhs is the number of
right-hand side vectors of Eq. (12).

linear system dimension of computational
solver linear system cost

present work
BiCG NA O(NiterNANrhs)

Ref. [21]

Ref. [12] LU decomp. MB + NB O((MB + NB)3)

Ref. [16] LU decomp. rank B O((rank B)3)

summarized. In general, Niter and Nrhs are smaller than NA,3

and become negligibly small when NA increases. Therefore
the computational cost for the present work can be regarded
as O(NA).

Now, let us discuss the case in which a system is extended
either in the x or y direction (see Fig. 1). When a system
size becomes n times larger in one of the directions, the
dimension of the linear equations to be solved in each method,
NA, MB + NB, or rank B, becomes n times larger. According
to Table I, the computational cost for the present method
becomes only n times larger, while those for the methods in
Refs. [12,16] become n3 times larger. This suggests that the
present method has an advantage over the previously proposed
methods when the unit cell of a system is extended in the x and
y directions.

In the case of a unit cell with large L (see Fig. 1), the
present method looks not to be advantageous to the previously
proposed methods any more, because according to Table I, the
computational cost of the present method depends on the num-
ber of the real-space grid points in a unit cell, NA; however,
those of the other methods are independent of the number of
the real-space grid points in the z direction. In such a case, the
computational cost for calculating the Green’s function matrix
becomes dominant in the previously proposed methods, and
is O(NiterNA(MB + NB)) for the method in Ref. [12] and
O(NiterNA rank B) for the method in Ref. [16]. In general,
MB + NB and rank B are much larger than Nrhs and Nint,
for instance, in the calculation of the (6,6) carbon nanotube
to be discussed in Sec. II D, MB = NB ∼ 26 000, rank B ∼

21000, Nrhs = 32, and Nint = 32. Therefore we can conclude
that the present method is still advantageous to the previously
proposed method in terms of the computational cost. If the
Green’s function of a whole unit cell is constructed from
those of the partitioned domains of the unit cell, as single-
site Green’s functions in the Korringa-Kohn-Rostoker Green
function method [30], the computational cost for calculating

3The number of iterations until convergence is proportional to the
square-root of the condition number of a coefficient matrix, and the
number of column vectors on the right-hand side considered in the
Sakurai-Sugiura eigensolver is usually of the order of ten.
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each single-site Green’s function can be smaller than that for
calculating generalized Bloch waves with the present method.

D. Dividing-and-scaling technique

As mentioned in Sec. II B, we usually set an annular
domain on the complex plane to define a contour integral path
used in the Sakurai-Sugiura projection method, because we
need only propagating and slowly decaying/growing evanes-
cent Bloch waves with λ in a certain range, i.e., λmin <

|λ| < λmax, where λmin < 1 and 1 < λmax are assumed. The
computational cost of the Sakurai-Sugiura projection method
used in the present method is proportional to Nrhs, as discussed
in Sec. II C. Besides, since the contour integral in Eq. (9a) is
performed numerically according to Eq. (9b), the computa-
tional cost is proportional to Nint too. It is also clearly seen
from Eq. (9b) that Nint affects the computational accuracy
of sl (for more detail, see Ref. [20]). The computational
accuracy is also affected by the difference in the order of
magnitude of sl , which manifests itself through the calculation
of zl+1

i in Eq. (9b). More specifically, numerical errors such
as loss of tailoring digits readily occur, when processing
a matrix generated from {sl|l = 0, 1, . . . , Nmom − 1} in the
Sakurai-Sugiura projection method (for more details, see
Appendix C).

The numerical errors deteriorate the computational accu-
racy. Therefore λmin(max) ≪ 1 or 1 ≪ λmin(max) is not favorable
in solving Eq. (8) with the Sakurai-Sugiura projection method
accurately. In addition to the deterioration in the accuracy,
using an annular domain with λmin(max) ≪ 1 or 1 ≪ λmin(max)

causes increase in computational cost. In Fig. 3, the average
numbers of BiCG iterations Niter required for solving Eq. (12)
for two different carbon nanotubes are plotted as a function of
the absolute value of z, which is on the inner or outer circle
of a given domains. It is found that the computational cost
for solving Eq. (12) increases biquadratically as a function of
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FIG. 3. Average numbers of BiCG iterations until convergency.
Equation (12) is solved for two different carbon nanotubes. Data
points represented with solid symbols are plotted as a logarithmic
function of domain radius |z|, and each data set is well fitted by a
biquadratic function, as shown in dashed curve.

log10(|z|). This drastic increase in computational cost through
Niter is clearly unfavorable for the present method in compar-
ison to the previously proposed methods [12,16], as one can
see from Table I.

To overcome the difficulty in the computational cost and
accuracy, we employ the following strategy. The reduction of
the computational cost is promoted by subdividing a single
annular domain, and the improvement of the computational
accuracy by scaling the subdivisions. The set of the proce-
dures is referred to as dividing-and-scaling technique here-
after. First, we divide a single annular domain on the complex
plane into multiple annular ones with thinner widths. As an
example, let us divide the single annular domain with the inner
radius λmin = 10−2 and the outer radius λmax = λ−1

min = 102

into four thinner annular subdomains, which have the inner
and outer radii

{(λmin, λmax)m|m = 1, 2, 3, 4}

= {(10−2, 10−1), (10−1, 100), (100, 101), (101, 102)}

(13)

like the schematic representation in Fig. 4(a). From the fact
that the computational cost for solving Eq. (12) is biquadrat-
ically proportional to log10(|z|) as shown in Fig. 3, Niter for
solving Eq. (12) for the subdomains of m = 2 and 3 are
very small and those for the subdomains of m = 1 and 4
are not so much as Niter for the original domain. Therefore
the total of Niter for all four subdomains is expected to be
much less than four times of Niter for the original domain.
The other parameter affecting the computational cost, i.e.,
Nrhs, is able to be smaller when dividing a single domain
into smaller subdomains; therefore the computational cost for
solving Eq. (12) can be reduced as seen in Table I. More
specifically, Nrhs can be reduced in inverse proportion to the
number of subdomains, e.g., in this case it can be set at
one-quarter of Nrhs used for the original single domain. This
reduction of Nrhs is reasonable, because Nrhs relates to the
dimension of the subspace associated with the eigenvalues
located in a given domain, and the number of the eigenvalues
in a domain decreases when reducing the domain size. When
the distribution of eigenvalues on the complex plane is not
uniform, we can choose proper Nrhs for each of the subdo-
mains. Consequently, the sum of the product of Niter and Nrhs

required for solving Eq. (12) for all subdomains is expected
to be smaller than that required for solving Eq. (12) for the
original single domain, resulting in that the reduction of the
total computational cost is achieved when dividing a single
annular domain into multiple thinner annular subdomains.

Next, let us discuss scaling each of the annular subdomains
for improving the computational accuracy. As mentioned
above, the deterioration of the computational accuracy orig-
inates from zl+1

i in Eq. (9b), and it becomes significant when
λmin(max) ≪ 1 or 1 ≪ λmin(max). Here, we propose to scale
each annular subdomains as λ̂min(max) = aλmin(max), where the
scaling factor a is determined so as to satisfy λ̂max = 1/λ̂min.
This procedure brings both inner and outer circles to the unit
circle on the complex plane as close as possible. Note that the
scaling changes Eq. (8) into

�Aψ = λ̂�̂Bψ (14)
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(b) computational error for (6,6) carbon nanotube
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(c) computational error for (8,0) carbon nanotube
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FIG. 4. (a) Schematic representation of dividing an annular domain, and (b) [(c)] computational error in λ and ψ for a (6,6) [(8,0)] carbon
nanotube. The open circles in (a) represent sampling points on the integral paths C2 and C3, which are zA′ = 1/z∗

A. The subdomains are
represented by the gray areas, and the dashed circle the unit circle on the complex plane. The computational errors are evaluated by the
Euclidean norms of the residual vectors of Eq. (8), i.e., ‖(λ�B − �A)ψ‖2. The parameters for the Sakurai-Sugiura projection method are set
as Nint = 32 and Nmom = 16. Nrhs is 128 and 56 for (6,6) and (8,0) carbon nanotubes, respectively. In the case with the dividing-and-scaling
technique, Nrhs is reduced to 32 and 14 for (6,6) and (8,0) carbon nanotubes, respectively. The thick, normal, and thin dashed horizontal lines
represent the averages of the computational errors over the all eigenpairs for the cases without the dividing-and-scaling technique, with the
dividing-and-scaling technique, and with the dividing-and-scaling and interchange techniques, respectively.

for each subdomain, where λ̂ = aλ and �̂B = �B/a. There-
fore Eq. (9) also changes to

ŝl =
1

2π i

∮

Ĉ

ẑl (ẑ�̂B − �A)−1
udẑ (15a)

≈
1

Nint

Nint∑

i

ẑl+1
i (ẑi�̂B − �A)−1

u. (15b)

Since the integration variable ẑ runs on the inner and outer
circle of the scaled subdomain, the difference in the order
of magnitude of ŝl is suppressed in comparison with that of
sl . Therefore processing a matrix generated from ŝl for l =

0, 1, . . . , Nmom − 1 in the Sakurai-Sugiura projection method
less suffers from numerical errors and it becomes stable. It
should be noted that according to the definitions of λ̂ and �̂B,
the matrix pencil in Eq. (15) is identical to that of Eq. (9),
i.e., ẑi�̂B − �A = zi�B − �A. Therefore the numerical cal-
culation of ŝl can be carried out using xi obtained by solving
Eq. (11). In the case of using the block version of the Sakurai-
Sugiura projection method, Xi obtained by solving Eq. (12) is
used instead of xi .

As mentioned concerning Eq. (11), it is very advantageous
in reducing computational cost to solve Eq. (11) [(12)] with
a BiCG method. To exploit the property, an original annular
domain and divided annular subdomains have to fulfill the
folowings conditions: the inner and outer radii of the original
domain satisfy λmax = 1/λmin, the original domain is divided
into an even number Ndiv of subdomains, and the inner and
outer radii of the mth and (Ndiv − m + 1)th subdomains sat-
isfy (λmin, λmax)Ndiv−m+1 = (1/λmax, 1/λmin)m. For example,
the subdivision shown in Eq. (13) fulfills the conditions. By

employing such a set of annular subdomains, one can reduce
the computational time for solving a set of Eq. (11) [(12)]
by half, because when solving Eq. (11) [(12)] at the point
A in Fig. 4(a), one can also obtain the solution of Eq. (11)
[(12)] at the point A’ simultaneously, i.e., one only has to solve
Eq. (11) [(12)] for Ndiv/2 subdomains. To further reduce the
computational costs, it should be noted that the integral along
an outer (inner) radius of an annular domain can be reused
when calculating the integral along the inner (outer) radius of
the next annular domain. Thus we can successively reduce the
total number of the BiCG iterations thanks to the convergence
property of the BiCG method and the reuse of the integral
although the product NrhsNdiv is larger than Nrhs of the single
domain on k-plane [21] in some cases.

Now let us compare the accuracy of λ and ψ obtained
by solving Eq. (8) with and without the dividing-and-scaling
technique. The accuracy is evaluated based on the compu-
tational errors, which are given as the Euclidean norms of
the residual vectors of Eq. (8), i.e., ‖(λ�B − �A)ψ‖2. Bloch
waves are described by ψ (r ) = exp(ik · r )φ(r ) with φ(r )
having the same periodicity as the atomic structure of the
bulk. We practically compute and normalize φ(r ) so that
‖φ(r )‖2 = 1. In Figs. 4(b) and 4(c), the computational errors
for the respective eigenpairs (λ, ψ) are plotted as a function
of |λ|. One can clearly see that the large computational
errors observed at the smaller eigenvalues |λ| < 1 for the case
without the dividing-and-scaling technique are suppressed
by two orders of magnitude when using the dividing-and-
scaling technique. As the consequence, the computational
errors obtained with the present method with the dividing-
and-scaling technique are below 10−8 and 10−9 for the (6,6)
and (8,0) carbon nanotubes, respectively. The averages of the
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computational errors over the all eigenpairs are improved by
more than two orders of magnitude for the (6,6) carbon nan-
otube, and by nearly three orders of magnitude for the (8,0)
carbon nanotube. Note that to compare the computational
errors with and without the dividing-and-scaling technique
under an equivalent computational condition, the number of
right-hand-side vectors Nrhs used in the block version of
the Sakurai-Sugiura projection method with the dividing-and-
scaling technique is set at one-quarter of that without the
dividing-and-scaling technique, because the single annular
domain is divided into four smaller annular ones.

E. Interchange technique

In addition to the propose of the dividing-and-scaling
technique discussed in Sec. II D, we also propose another
technique to improve the accuracy of (λ,ψ ) in Eq. (8), which
is solved within the framework of the Sakurai-Sugiura projec-
tion method. The technique is referred to as the interchange
technique hereafter. Firstly, we introduce the following auxil-
iary eigenvalue problem:

�Bψ ′ = λ′�Aψ ′. (16)

Comparing the eigenvalue problem with Eq. (8), one can
easily see that the coefficient matrices in the left- and right-
hand sides, �A and �B, are interchanged. Therefore λ = 1/λ′

and ψ = ψ ′. According to the discussion in Sec. II B, in the
framework of the Sakurai-Sugiura projection method, Eq. (16)
is solved through calculating the moment vectors

s
′
l =

1

2π i

∮

C ′

(z′)l (z′�A − �B)−1
udz′ (17a)

≈
1

Nint

Nint∑

i

(z′
i )

l (z′
i�A − �B)−1

u (17b)

for l = 0, 1, . . . , Nmom − 1, which corresponds to Eq. (9).
Note that z′ = 1/z because λ = 1/λ′. The contour integral
in Eq. (17a) is numerically computed according to Eq. (17b)
by solving the following linear equations for each of discrete
sampling points z′

i :

(z′
i�A − �B)x

′
i = u. (18)

Using z′
i = 1/zi , Eq. (18) can be rewritten as

(zi�B − �A)

(
−

1

zi

x
′
i

)
= u. (19)

This linear equation is equivalent to Eq. (10) if x
′
i = −zi xi ,

meaning that if one already knows xi , one can easily obtain
x

′
i without solving Eq. (18).

(λ,ψ ) of Eq. (8) and (λ′,ψ ′) of Eq. (16) are obtained with
the Sakurai-Sugiura projection method using {xi} and {x

′
i}, re-

spectively. Since λ = 1/λ′ and ψ = ψ ′, one can easily convert
the eigenpairs of Eq. (16) into those of Eq. (8) as (λ′,ψ ′) ←

(1/λ′,ψ ′). Although the two sets of the eigenpairs, (λ,ψ ) and
(λ′,ψ ′), are essentially identical to each other, in practice they
are not identical because of the numerical errors caused during
solving Eqs. (8) and (16) by the Sakurai-Sugiura projection
method. Especially, when Nmom is large, the numerical error is
expected to be large based on the discussion in Sec. II D. Now,

by comparing the Euclidean norms of the residual vectors
of Eq. (8), i.e., ‖(λ�B − �A)ψ‖2 and ‖(λ′�B − �A)ψ ′‖2,
we can choose either of (λ,ψ ) or (λ′,ψ ′) as the solution of
Eq. (8), which has less computational error. In this technique,
we avoid explicit calculations for solving Eq. (18); thus, the
increase in computational time due to the interchange tech-
nique is negligible. This technique is universally applicable
for any generalized eigenvalue problems to be solved with the
Sakurai-Sugiura projection method, because the discussion
above does not depend on the properties of the coefficient
matrices �A and �B. Note that the number of the eigenvalues
of Eq. (8) in the domain C and that of Eq. (16) in the domain
C ′ are rightly equal. The computer algorithm of the present
method based on the SS-RR method incorporating the two
computational techniques is described in Appendix D.

In Figs. 4(b) and 4(c), the computational errors obtained
for adopting the interchange technique in addition to the
dividing-and-scaling technique are plotted. It is clearly seen
that when the interchange technique is included, the relatively
large computational errors for the case with the dividing-and-
scaling technique are suppressed, though the smaller ones do
not change so much. Consequently, we achieve to improve the
computational errors by roughly one order of magnitude on
the average for both the (6,6) and (8,0) carbon nanotubes only
with the negligible increase in the computational time. Note
that the increase in the computational error observed for some
eigenpairs when including the interchange technique seems to
occur due to the unreproducible loss of trailing digits during
performing the Sakurai-Sugiura projection method.

F. Computational time

In this section, we compare the computational time for
solving the eigenvalue problems for generalized Bloch states
in an annular domain with the present method with/without
the two computational technique as well as with the methods
proposed in Refs. [16,21]. The coefficient matrices of Eq. (8)
is prepared4 for a (6,6) carbon nanotube based on the real-
space finite-difference formalism [10] within the framework
of the density functional theory [8], and Eq. (8) is solved to
measure the computational time. The measurement is carried
out on a single computer node with two Intel Xeon E5-2667v2
processors with eight cores/processor. Table II shows the
computational time averaged per a single energy point as well
as the parameters used in the measurement. The parameters
listed in Table II, i.e., Nint, Nrhs, and Nmom, are optimized so
that the Euclid norm of the residual vector ‖(λ�B − �A)ψ‖2

for each eigenpair reaches the tolerance smaller than 10−8

and the computational time becomes as small as possible.5

4The effective potential and parameters necessary for constructing
�A and �B are predetermined by the electronic structure calcula-
tions using RSPACE [15,32], which is also based on the real-space
finite-difference formalism. The exchange-correlation interaction is
treated using the local density approximation [38] within the frame-
work of the density functional theory, and the interaction between
valence electrons and nuclei is treated using the norm-conserving
pseudopotentials [39].

5Nrhs is increased by 8, 16, 128, and 1024 for Nrhs � 32, 32 <

Nrhs � 128, 128 < Nrhs � 1024, and 1024 < Nrhs, respectively.
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TABLE II. Computational time for calculating generalized Bloch states in an annular domain. The computational time is averaged over
the number of the energy points Nε considered in the shifted CG/BiCG method. λmin(max) corresponds to the radius of the inner (outer) domain
edge. Nint, Nrhs, and Nmom denote the numbers of sampling points on the integral path, of the column vectors in the right-hand side of Eq. (12),
and of momenta l considered in Eq. (9), respectively. When the dividing-and-scaling technique is used, an annular domain is divided into
two (four) subdomains for λmin = 0.1 (0.01). For the method of Ref. [16], the computational time for the LU decomposition is shown in the
parentheses, and the rest is almost for the calculations of the Green’s function matrix A−1, which are performed using the shifted CG method.

(a) λmin = 0.1 and λmax = 10

computational time / Nε (sec.)

Sakurai-Sugiura projection method eigenvalue DSa interchange Nint Nrhs Nmom Nε = 1 11 51 101

SS-Hankel + shifted BiCG λ no no 64 128 8 10198 3819 2102 1996

no no 32 48 16 1912 541 387 390
present work

SS-RR + shifted BiCG λ yes no 32 2 × 16 16 939 263 188 182
yes yes 32 2 × 12 16 702 207 146 141

17423 7802 6544 6956
Ref. [16] SS-RR + LU decomp. λ no no 8 512 4

(3938) (3938) (3938) (3938)

Ref. [21] SS-Hankel + shifted BiCG k no no 96 32 16 2553 653 498 481

(b) λmin = 0.01 and λmax = 100

computational time / Nε (sec.)

Sakurai-Sugiura projection method eigenvalue DSa interchange Nint Nrhs Nmom Nε = 1 11 51 101

SS-Hankel + shifted BiCG λ no no 128 2048 4 ∼7d.b ∼2d.b ∼1.5d.b ∼1.5d.b

no no 32 384 4 29346 8086 6340 6474
present work

SS-RR + shifted BiCG λ yes no 32 4 × 32 16 4370 1223 886 890
yes yes 32 4 × 20 16 2764 787 592 565

18637 8746 7487 7423
Ref. [16] SS-RR + LU decomp. λ no no 8 1024 4

(4193) (4193) (4193) (4193)

Ref. [21] SS-Hankel + shifted BiCG k no no 96 128 16 16938 4524 3444 3182

aThe dividing-and-scaling technique.
bValues are estimated from the data at one row below according to the computational cost in Table I.

When the dividing-and-scaling technique is included, an an-
nular domain is divided into two and four thinner annular
domains for λmin = 0.1 and 0.01, respectively. The BiCG
linear-equations solver is parallelized on four MPI processes
and four OpenMP threads/process, and the LU decomposition
is executed on 16 OpenMP threads. Note that the shifted
BiCG solver is implemented in the linear equation solver of
the Sakurai-Sugiura projection method for the present method
and the method of Ref. [21], and the shifted CG method [27] is
implemented in the calculation of the Green’s function matrix
A−1 for the method of Ref. [16]. The computational time for
the LU decomposition is measured only for an single energy
point, because it depends only on the matrix dimension and
the matrix dimension does not change for any energy points.

Comparing with the methods in Refs. [16,21], the present
method improves the computational time for λmin = 0.1.
However, for λmin = 0.01, the present method without the
dividing-and-scaling technique is not faster than the method
of Ref. [21], even is slower than or comparable to the method
of Ref. [16]. More specifically, the computational time of the
present method without the dividing-and-scaling technique
for λmin = 0.01 is approximately 16 times of that for λmin =

0.1. In the rest of this paragraph, we discuss the computational
time of the present method without the dividing-and-scaling
technique. The large increase in the computational time can be

explained by the fact that the computational cost for solving
the linear equation is proportional to Niter and Nrhs, as shown
in Table I. By changing λmin from 0.1 to 0.01, not only Nrhs

increases to eight times, but also Niter increases due to the
increase in the distance between a sampling point z on the
integral path and the unit circle on the complex λ plane, as
seen in Fig. 3. In the case of the method of Ref. [16], the
computational time does not strongly depend on λmin, because
the most of the computational time is spend for calculating the
Green’s function matrix A−1, and is independent of λmin. The
dimension of the matrix treated in the LU decomposition is the
same for both λmin, and it does not affect the computational
time, as seen in Table I. Only the difference in Nrhs slightly
affects the computational time for solving the sets of linear
equations with the LU decomposition. In the case of the
method of Ref. [21], the computational cost for solving each
set of the linear equations derived from a nonlinear eigenvalue
problem is proportional to Niter, NA, and Nrhs, the same to the
present work as shown in Table I. When changing λmin from
0.1 to 0.01, Nrhs increases to four times, and Niter is expected
to increase as well as the case of the present method. However,
the increase in Nrhs is not so much as that of the present
method, for which Nrhs increases to eight times. Because of
the relatively small increase in Nrhs, the computational time
for the method of Ref. [21] does not increase as much as that

195422-10



COMPLEX BAND STRUCTURE CALCULATIONS BASED ON … PHYSICAL REVIEW B 98, 195422 (2018)

for the present method. The less increase in the computational
time for the method of Ref. [21] can be understood from the
fact that one can keep Nmom relatively large and the increase
in Nrhs small even when λmin is changed, because the contour
integral (9) is carried out not on the λ plane but on the k plane,
where k = −i ln(λ)/L.

Now let us discuss the effect of the dividing-and-scaling
technique on the computational time. Comparing the com-
putational time of the present method with and without
the dividing-and-scaling technique, one can see that the
computational time decreases to half and one-seventh for
λmin = 0.1 and 0.01, respectively. The decrease in the compu-
tational time is brought by the decrease in Nrhs and Niter. The
decrease in Nrhs is achieved by dividing an annular domain
into subdomains, because the number of the eigenvalues in a
single domain decreases. The decrease in Niter is also achieved
by scaling the annular subdomains, i.e., by setting the radii
of the outer and inner edges of each subdomain as close to
the unit circle on the complex λ plane as possible, one can
decreases Niter, as seen from Fig. 3. Besides, one can increase
Nmom, which has no impact on the computational time. The
effect on the computational time become drastic when λmin

(λmax) is small (large), as seen in Table II.
Table II also shows the computational time of the present

method when the interchange technique is used. One can
clearly see that the computational time with the interchange
technique is close to 75% and 63% of that without the
interchange technique for λmin = 0.1 and 0.01, respectively.
Each of the ratios corresponds to the ratio of Nrhs of the cases
with and without the interchange technique. From the fact we
can see that the decrease in the computational time is brought
by the decrease in Nrhs, and the decrease in Nrhs is enabled
by the improvement in accuracy brought by the interchange
technique

From Table II, one can also see that in all the cases the
shifted BiCG linear equation solver works very well. The av-
eraged computational time per single energy point decreases
to 20–40% when the number of energy points Nε is increased
from 1 to 101 for both λmin.

G. Complex band structure

Here, we confirm that the present method is able to
reproduce the band structures obtained from conventional
electronic structure calculations, which shows the energies
of propagating electronic states as a function of real wave
number ℜ(k) (referred to as the real part of a complex band
structure hereafter). We also show the dispersion relations
between the energies of evanescent Bloch states and the imag-

inary wave number ℑ(k) (referred to as the imaginary part of a
complex band structure hereafter). The complex wave number
k is determined through the definition of the phase factor λ =

exp(ikL), and λ is obtained by solving Eq. (8), as discussed
in the previous subsections. Figure 5 shows the complex
band structures of two different single-wall carbon nanotubes
as well as the corresponding band structures obtained from
conventional electronic structure calculations. The complex
band structures are calculated [31] based on the real-space
finite-difference formalism [10] within the framework of the
density functional theory [8]. The reference band structures
are obtained using the electronic structure calculation code
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FIG. 5. Complex band structures of (a) (6,6) armchair carbon
nanotube and (b) (8,0) zigzag carbon nanotube. Complex band
structures composed of black dots are obtained with the present
method, and band structures composed of open circles are obtained
from conventional electronic structure calculations. EF denotes the
Fermi energy.

RSPACE [15,32]. In each panel of Fig. 5, the real part of
the complex band structure is in good agreement with the
reference band structure. Moreover, in comparison to the car-
bon nanotube band structures calculated elsewhere within the
framework of the density functional theory [33], the real parts
are qualitatively consistent with them. These facts mean that
the present method can reproduce band structures properly.
The electronic band in the real part smoothly continues into
the imaginary part through the Ŵ point, where the dispersion
of the electronic band is zero, as Heine has proposed as a
rule for the complex band structure [34]. These bands in the
imaginary parts are categorized into the imaginary bands of
the first kind, according to Chang’s classification [35].
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Now let us compare the complex band structures of the
(6,6) armchair and (8,0) zigzag carbon nanotubes, and discuss
the difference in the behavior of evanescent Bloch states of
these nanotubes. An armchair carbon nanotube, such as the
(6,6) carbon nanotube, has the Dirac point at the real wave
number ℜ(k) = 1/3, and a large energy gap between the
valence and conduction bands at the Ŵ point in the real part
(ℜ(k) = 0), as shown in Fig. 5(a). Therefore, around the Ŵ

point in the imaginary parts (ℑ(k) = 0), a large energy gap
is present and slowly decaying evanescent Bloch states with
small imaginary wave number are forbidden. In contrast, a
semiconducting zigzag carbon nanotube, such as the (8,0)
carbon nanotube, has a relatively small valence-conduction
band gap at the Ŵ point in the real part, and propagating
Bloch states are observed at close to the Fermi energy EF,
as shown in Fig. 5(b). Therefore, in the imaginary part, the
electronic bands connecting the valence and conduction bands
observed in the real part are found around EF. The evanescent
Bloch states composing the electronic bands in the imaginary
part have small imaginary wave number; hence they decay
very slowly. Although such evanescent Bloch states are not
considered when translational symmetry along the nanotube
axis exists, they play a significant role when the translational
symmetry is broken, for instance, by cutting a carbon nan-
otube to form an open end and attaching a cluster to form
an interface. If the cluster has an electronic state around EF,
it may hybridize with a slowly decaying evanescent Bloch
state of the zigzag carbon nanotube. The hybridized state is
principally localized at the cluster, and the wave function tail
would deeply penetrate the carbon nanotube. On the other
hand, when a cluster is attached at an open end of an armchair
carbon nanotube, it is speculated that the hybridized state
between a cluster state and an evanescent Bloch state around
EF is more localized around the cluster than in the case of a
zigzag carbon nanotube. As a consequence, the physical prop-
erties of the localized hybridized states can be affected by the
decay length of the evanescent Bloch states of host materials.

III. APPLICATION

In this section, we use the present method to calculate
the complex band structures of more complex systems, i.e.,
a multiwall carbon nanotube composed of (8,0), (17,0), and
(26,0) zigzag single-wall carbon nanotubes. In the same way
to the practical calculations in the previous section, the com-
plex band structure calculations [31] in this section are based
on the real-space finite-difference formalism [10] within the
framework of the density functional theory [8], and the ref-
erence band structures are obtained using the RSPACE code
[15,32]. The complex band structures of the individual (8,0),
(17,0), and (26,0) single-wall carbon nanotubes are illustrated
in Figs. 5(b), 6(a), and 6(b), respectively. Analogous to the
complex band structure of the (8,0) carbon nanotube, each of
the complex band structures of the (17,0) and (26,0) carbon
nanotubes has a small energy gap between the valence and
conduction bands at the Ŵ point in the real parts, and the
imaginary bands of the first kind are observed. The valence
and conduction bands are also connected by an imaginary
band, which has a small imaginary wave number ℑ(k) and
is composed of slowly decaying evanescent Bloch states.
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FIG. 6. Complex band structures of single-wall zigzag carbon
nanotubes. Solid dots are obtained with the present method, and
open circles from conventional electronic structure calculations. (a)
and (b) are the complex band structures of (17,0) and (26,0) carbon
nanotubes, respectively.

Figure 7(a) shows the complex band structure of the mul-
tiwall carbon nanotube composed of the three single-wall
carbon nanotubes. In the real part, the band structure looks
just like the superimposition of the three band structures of
the individual zigzag carbon nanotubes. This is reasonable
because the separations between the nanotube walls in the
multiwall carbon nanotube are more than 3 Å, which is too
large to form hybridization between the π orbitals of different
carbon nanotubes. Between the different nanotube walls, the
van der Waals interaction is dominant. The band structure in
the imaginary part, however, can not be explained straightfor-
wardly only by superimposing the three band structures. In the
complex band structure around EF and the Ŵ point, which is
shown in Fig. 7(b), one can see that the electronic band looks
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FIG. 7. Complex band structures of multiwall carbon nanotube.
Multiwall nanotube is composed of (8,0), (17,0), and (26,0) carbon
nanotubes. (b) is an enlarged view around the origin of (a). Solid
dots are obtained with the present method, and open circles from
conventional electronic structure calculations. Notable data points
are in red and are connected with lines for visibility.

significantly different from those of the individual carbon nan-
otubes depicted in Figs. 5(b), 6(a), and 6(b). More specifically,
the electronic band indicated by A in Fig. 7(b) forms a closed
loop in the imaginary part, and does not connect any pair of
valence and conduction bands in the real part. The electronic
band indicated as B in Fig. 7(b) appears to connect two
valence bands in the real part. The electronic band indicated
as C in Fig. 7(b) has sharp bends looking like disconnections.
Consequently, there exist band gaps in the imaginary part,
which are not observed in the band structures of the individual
carbon nanotubes. These unique behaviors of the electronic

bands and the resultant band gaps in the imaginary part are
clearly brought about by the formation of the multiwall carbon
nanotube from the individual carbon nanotubes.

To investigate the band gaps in more detail, we use a mul-
tiwall heteronanotube composed of (8,0) and (17,0) carbon
nanotubes and a (26,0) boron-nitride nanotube. Boron-nitride
nanotubes are known to have a relatively large band gap [36],
therefore, the electronic bands originating from the (26,0)
carbon nanotube, which are present in Fig. 7, are expected
to be removed from the energy range considered in this
study. Figure 8(a) shows the complex band structure of the
heteronanotube. The complex band structure looks simpler
than that of the multiwall carbon nanotube, shown in Fig. 7.
Compared with the complex band structures of the (8,0) and
(17,0) single-wall carbon nanotubes shown in Fig. 8(b), one
can see that the complex band structure of the multiwall hetero
nanotube is composed of the electronic bands originating only
from the two individual carbon nanotubes, and the electronic
bands originating from the boron-nitride nanotube are ex-
cluded from the energy range shown in Fig. 8(a). The band gap
in the imaginary part, which we have pointed out in Fig. 7(b),
is also successfully reproduced as indicated by solid and
dotted curves in Fig. 8(a), and measures ∼0.6 eV. Because
of the opening of the energy gap in the imaginary part, one
can see two electronic bands characteristic to the multiwall
nanotube: one is the band connecting two conduction bands
in the real part, and the other seems to connect two valence
bands in the real part, as indicated by the solid and dotted
curves in Fig. 8(a). Comparing the complex band structures of
the multiwall heteronanotube and each individual single-wall
nanotube, we can see that each characteristic band in the imag-
inary part connects two electronic bands in the real part: one
is originating from the (8,0) carbon nanotube and the other is
from the (17,0) carbon nanotube. This implies the hybridiza-
tion of electronic states between different carbon nanotubes.

Let us investigate the hybridization of the electronic states
in the imaginary parts in detail. Figure 9 shows the spatial
distributions of the wave functions on an xy cross-section,
which are indicated as A, B, and C in Fig. 8(a). It should be
noted that the wave functions in Fig. 9(b) are multiplied by a
phase, exp(iθ ), so that the wave-function values become real
numbers. Electronic states are doubly degenerate at each of
A, B, and C on the E-k plane; hence, two different views are
depicted for each point, as shown in Figs. 9(a)–9(c). From
the spatial distributions in Figs. 9(a) and 9(c), one can see
that the generalized Bloch states at A and C are localized
at the (8,0) and (17,0) carbon nanotube walls, respectively.
Moreover, these states have the same symmetry, i.e., the
wave functions in Fig. 9(a) have the three-fold rotational
symmetry with respect to the nanotube axis, and the envelop
functions of the wave functions in Fig. 9(c) also have the same
symmetry, which can be observed in the region between the
two nanotube walls. These facts imply that these states can
hybridize with each other over the different nanotube walls.
Indeed, the intrawall hybridization occurs in the imaginary
part of the complex band structure, as indicated by the solid
curve in Fig. 8(a), though the two electronic bands do not
cross each other in the real part. On the electronic band
indicated by the solid curve, one can find the branch point
being the most distant from the real axis of the complex band
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FIG. 8. Complex band structures of multiwall heteronanotube
and two single-wall carbon nanotubes. The multiwall nanotube is
composed of (8,0) and (17,0) carbon nanotubes and (26,0) boron-
nitride nanotube. Solid dots are obtained with the present method,
and open circles from conventional electronic structure calculations.
Some data points are connected with solid and dotted curves for
visibility. B and B′ in (a) indicate the branch points of the bands.
The spatial distributions of the electronic states at A, B, and C are
depicted in Fig. 9.

structure, which is indicated by B in Fig. 8(a). Note that B′

on the dashed curve in Fig. 8(a) indicates another branch
point caused by the band-gap opening due to the intrawall
hybridization. In the spatial distributions of the generalized
Bloch states at the branch point B, shown in Fig. 9(b), one can
clearly see the hybridization of the generalized Bloch states
shown in Figs. 9(a) and 9(c): the number of the nodes in the
circumferential direction of the (8,0) carbon nanotube wall in
Fig. 9(b) is the same to that in in Fig. 9(a), and the number
of the nodes along the circle of the (17,0) carbon nanotube
wall in Fig. 9(b) is the same to that in Fig. 9(c). Comparing
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FIG. 9. Spatial distributions of generalized Bloch states of mul-
tiwall hetero nanotube. In each panel, the wave function values on
an xy plane are plotted in logarithmic scale. Note that the wave
functions depicted in the panel (b) are multiplied by a phase, exp(iθ ),
so as to become real numbers. (a), (b), and (c) correspond to A,
B, and C indicated in Fig. 8(a), respectively. Since the generalized
Bloch states in each of (a), (b), and (c) are doubly degenerate, the two
wave functions are depicted in each panel. Concentric dashed circles
represent (8,0) and (17,0) carbon, and (26,0) boron-nitride nanotube
walls. Dashed lines are the guides to see the symmetry of the wave
functions.

the line profiles of the generalized Bloch states across the
multiwall nanotubes, which is drawn in Fig. 10, the feature
of the generalized Bloch states at the branch point is more
clearly seen. The features observed around the (8,0) nanotube
wall in Fig. 10(b) are also visible in Fig. 10(a), and those
observed around the (17,0) nanotube wall in Fig. 10(b) are
in Fig. 10(c). From this observation, the electronic band in the
energy ranges above and below the branch point B is seen to
be characterized by the electronic states of (17,0) and (8,0)
carbon nanotubes, respectively. This implies that the branch
point B is the boundary between the two states, and this is
consistent with the explanation of the branch point in Ref. [1].
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FIG. 10. Line profiles of generalized Bloch states across the
multiwall heteronanotube. In each panel, the amplitude of the wave
function on the line y = 0 in Fig. 9 is plotted in logarithmic scale as a
function of the position x. The solid and dotted curves in (a), (b), and
(c) represent the line profiles of the left and right panels in Figs. 9(a)–
9(c), respectively. The positions of the respective nanotube walls are
indicated by the vertical dashed lines.

It should be noted that the branch point at −0.44 eV
indicated by B′ in Fig. 8(a) locates within the energy width
of the electronic band in the real part drawn by the dotted
curves. This is contrast to the point (VII.2) in Ref. [1], which
states that branch points appear only in band gaps for one-
dimensional materials. This inconsistency can be understood
from the fact that the hybridization of the evanescent Bloch
states occurs in the plane perpendicular to the nanotube axis.

As a consequence of the band-gap opening, the slowly
decaying evanescent Bloch state with the three-fold rotational
symmetry is forbidden in the energy gap. More specifically,
the interface states with the three-fold rotational symmetry do
not appear around EF, when an end of the multiwall nanotube
is attached to a solid surface to form a heterojunction. This
is in contrast to the case of the (8,0) and (17,0) individual
carbon nanotubes; such evanescent Bloch states are allowed
to exist in the energy gap, as shown in Fig. 8(b). At the
interface between an end of the single-wall nanotube and a
solid surface, the interface states with the threefold rotational
symmetry can exist around EF, and affect the electronic
properties of the interface. Consequently, we conclude that
when a solid surface is attached to an end of a multiwall
nanotube, the electronic structure at the interface is not the
same to the superimposition of the electronic structures of
the interfaces between the solid surface and the individual
single-wall nanotubes.

IV. CONCLUSION

On the basis of the OBM method within the framework
of the density-functional real-space finite-difference formal-

ism, we derived a generalized eigenvalue problem for gen-
eralized Bloch states, which does not include any Green’s
function matrix in the coefficient matrices; hence the coeffi-
cient matrices are sparse. The Rayleigh-Ritz variation of the
Sakurai-Sugiura projection method, one of the more accurate
and stable variations, was applied to solving the general-
ized eigenvalue problem for finding only propagating states
and slowly decaying/growing evanescent states, which are
essential for describing the physics of surface/interface states
and constructing the self-energy of semi-infinite systems.
To overcome the disadvantages in computational accuracy
and cost in comparison to the previously proposed methods,
we also proposed the dividing-and-scaling technique and the
interchange technique. Consequently, the derived generalized
eigenvalue problem was proven to be accurately and effi-
ciently solved only for necessary generalized Bloch states by
means of the Rayleigh-Ritz variation of the Sakurai-Sugiura
projection method incorporating the two computational tech-
niques. Throughout the comparison of the computational time
measured with the present method to those with the method
proposed previously, we showed that the present method
with the two computational techniques is advantageous to the
conventional methods in terms of the computational time. The
real parts of the complex band structures calculated with the
present method are in good agreement with the band structures
calculated from conventional electronic structure calculations.
The imaginary part of the complex band structures obtained
with the present method is also consistent with previous work
on the general properties of complex band structures. Apply-
ing the present method to more practical calculations of the
complex band structure of multiwall carbon/heteronanotubes,
we investigated the change in the band structure from indi-
vidual single-wall carbon nanotubes. Although the interaction
between the different nanotube walls is dominated by the van
der Waals interaction and no significant change is observed
in the real part of the complex band structure, the imaginary
bands are significantly different in comparison to those of the
individual single-wall carbon nanotubes. This is caused by the
hybridization of evanescent Bloch states in the imaginary part
of the complex band structure. Consequently, the application
calculations reveal that multiwall carbon/hetero nanotubes
have specific evanescent Bloch states and complex band
structures, which are different from those of the individual
single-wall nanotubes composing the multiwall nanotubes.
The material-specific evanescent Bloch states are obviously
important for designing interface/surface electronic structures
in the field of band engineering, and the present method can
contribute to understand interface/surface states of large-scale
systems.
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APPENDIX A: REDUCING DIMENSION OF EQ. (8)

Although we presented in the main text the formulation
to obtain the generalized Bloch wave functions without cal-
culating the Green’s function, in this section we introduce a
variation of the formulation to reduce the dimension of the
generalized eigenvalue problem (8) using of the inverse of a
small block of the matrix in Eq. (5). From the second row
block of Eq. (8), one can see that the wave-function subvector
ψ

(i)
mid is expressed as

ψ
(i)
mid = A−1

22

(
A21ψ

(i)
NB

+ A23ψ
(i)
MB

)
(A1)

without the phase factor λ, because the right-hand side of
the second row block of Eq. (8) is zero. The matrices A21

and A23 are composed of the first NB and last MB column
vectors of A2, respectively. The matrix A22 is composed of
the rest of the column vectors of A2, and is, therefore, square.
A22 is invertible because it is a full-rank. The inverse of A22

can be efficiently calculated by using the shifted conjugate
gradient method [26] and/or constructed from the inverses of
the diagonal block of A22 [30].

Substituting Eq. (A1) into the first and third row blocks
of Eq. (8), we obtain the following generalized eigenvalue
problem only for subvectors ψ

(i)
NB

and ψ
(i)
MB

:

[
0 −B†

�31 �33

][
ψ

(i)
NB

ψ
(i)
MB

]
= λ

[
�11 �13

−B 0

][
ψ

(i)
NB

ψ
(i)
MB

]
, (A2)

where �ij = Aij − Ai2A−1
22 A2j for i, j = 1, 3. The dimen-

sion of the generalized eigenvalue problem is reduced to
MB + NB. The matrices A11 and A13 (A31 and A33) are
composed of the first NB and last MB column vectors of
the matrix A1 (A3), respectively. The matrix A12 (A32) is
composed of the rest of the column vectors of A1 (A3).
It should be noted that the dimension of Eq. (A2) is re-
duced to 2 × rank B when the singular-value decomposition
of the interaction matrix B is introduced, as discussed in
Ref. [16].

APPENDIX B: EXAMPLE OF HAMILTONIAN MATRICES

In this section, we exemplify the Hamiltonian matrices
H(i) and H(i−1,i) for a one-dimensional system based on the
real-space finite-difference formalism within the framework
of the density functional theory, and derive a corresponding
generalized eigenvalue problem to be solved. Adopting the
central difference formula for the kinetic energy operator6 and
assuming a local effective potential v(z), H(i) is expressed as

6This corresponds to N = 1 in Ref. [10].

a tridiagonal matrix and H(i−1,i) has only one nonzero element
at the bottom-left corner:

H(i) =




α1 β 0

β α2
. . .

. . .
. . . β

0 β αNA




(B1)

and

H(i−1,i) =




0 · · · · · · 0
...

...

0
...

β 0 · · · 0




(B2)

with αi = 1
d2 + vi and β = − 1

2d2 , where d is the grid spacing
and vi denotes the effective potential at z = zi . From Eq. (B2),
one can see that MB = NB = 1. According to the discussion
in Sec. II A, the coefficient matrices of the generalized eigen-
value problem (8) are obtained as

�A =




0 · · · · · · 0 | β

β α2 β 0
. . .

. . .
. . .

0 β αNA−1 β

0 · · · 0 β αNA




(B3)

and

�B =




−α1 −β 0 · · · 0
0 · · · · · · · · · 0
...

...

0 0
...

−β 0 · · · · · · 0




. (B4)

Note that the partitions in the matrices correspond to those
in Eq. (8). The Hamiltonian matrices H(i) and H(i−1,i) for
three-dimensional systems are exemplified in Eqs. (13) and
(A6) of Ref. [12], respectively. The Hamiltonian matrices with
nonlocal potentials are also discussed in Sec. II A of Ref. [16].

APPENDIX C: THE SAKURAI-SUGIURA

PROJECTION METHOD

In this section, we briefly introduce the Sakurai-Sugiura
projection method that is employed for solving Eq. (8).
The Sakurai-Sugiura projection method is classified as an
eigensolver based on a contour integral [20,23–25,37] that
finds eigenvalues only in a given domain on the complex
plane and the eigenvectors belonging to the eigenvalues. In
general, the contour-integral-based eigensolvers filter out the
information of unnecessary eigenpairs by performing contour
integrals along the edge of the given domain, and generate
a subspace associated with the eigenvectors belonging to the
necessary eigenvalues. Among various contour-integral-based
eigensolvers, the Sakurai-Sugiura projection method is char-
acterized by generation of the subspace, i.e., the subspace is
spanned by a set of the moment vectors sl defined by Eq. (9),
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S = [s0, s1, . . . , sNmom−1], which is generated from a single
arbitrary vector u.

In the Rayleigh-Ritz variation of the Sakurai-Sugiura pro-
jection (SS-RR) method [24], S is processed by the singular-
value decomposition,

S = US�SV
†
S, (C1)

to find rank S, which corresponds to the number of the
eigenvalues in the given domain, i.e, Neig = rank S. This is
easily understood by the fact that according to the residue
theorem the singular values corresponding to the eigenpairs
outside of the given domain are suppressed by preforming the
contour integral of Eq. (9) [20]. �S is the Neig-dimensional
diagonal matrix composed of the singular values, and US

(VS) is composed of Neig orthonormalized column vectors
spanning the column (row) space of S. Therefore US can be
used as the subspace that is necessary and sufficient to express
the eigenpairs one wants. By projecting the generalized eigen-
value problem (8) onto US, the reduced eigenvalue problem is
obtained as

�̃Aψ̃RR = λ�̃Bψ̃RR, (C2)

where �̃A = U
†
S�AUS and �̃B = U

†
S�BUS. The eigenvector

of Eq. (8) is expressed by the linear combination of the column
vectors of US, i.e., ψ = USψ̃RR.

On the other hand, the Hankel-matrix variation of the
Sakurai-Sugiura (SS-Hankel) method [20] uses the following
pair of Hankel matrices:

HHankel =




µ0 µ1 · · · µNmom−1
µ1 µ2 · · · µNmom
...

...
. . .

...

µNmom−1 µNmom

. . . µ2Nmom−2


 (C3)

and

H<
Hankel =




µ1 µ2 · · · µNmom

µ2 µ3 · · · µNmom+1
...

...
. . .

...

µNmom µNmom+1
. . . µ2Nmom−1




, (C4)

where µl is the lth-order moment of the scalar-valued function
u
†(z�B − �A)−1

u, i.e., µl = u
†
sl . It is known that the gen-

eralized eigenvalue problem composed of HHankel and H<
Hankel,

H<
HankelψHankel = λHHankelψHankel, (C5)

also give the eigenvalues in the given domain on the complex
plane, which are identical to those of Eq. (8); therefore
Neig = rank HHankel = rank S. Note that HHankel and H<

Hankel
can be rank-deficient, i.e., Neig < Nmom, because we are not
able to know the number of the eigenvalue in the given domain
in advance. Now, let us consider reducing the dimension of
Eq. (C5) to Neig. Analogous to the case of the SS-RR method,
using the singular-value decompostion HHankel is expressed as
a product of three matrices:

HHankel = UH�HV
†
H. (C6)

Here, �H is the Neig-dimensional diagonal matrix composed
of the singular values, and UH (VH) is composed of Neig

orthonormalized column vectors spanning the column (row)
space of HHankel. Substituting Eq. (C6) for HHankel in Eq. (C5),
and operating matrices so that the generalized eigenvalue

problem (C5) changes to a standard eigenvalue problem, one
obtains

�
−1/2
H U

†
HH<

HankelVH�
−1/2
H︸ ︷︷ ︸

H̃Hankel

ψ̃Hankel = λψ̃Hankel, (C7)

where ψHankel = VH�
−1/2
H ψ̃Hankel. Now, Eq. (C5) is reduced

to the Neig-dimensional standard eigenvalue problem with
respect to H̃Hankel. Consequently, the eigenvector of Eq. (8)
is given as ψ = SψHankel. From Eqs. (C3) and (C4), it is
clearly seen that to construct HHankel and H<

Hankel large enough
to contain the information of all eigenpairs in the given
domain, one has to calculate the moment vectors sl up to
l = 2Nmom − 1. The maximum order of sl processed in the
SS-Hankel method is larger than that in the SS-RR method;
therefore the deterioration of computational accuracy may
occur easily, as discussed in Secs. II B and II D.

Algorithm 1

1: input �A, �B, λmin, Nint, Nmom, and Ndiv

2: assume λmin < 1 and Ndiv = 2n for n ∈ N

3: λmax ← 1/λmin, Neig ← 0, and {(λi, ψ i )} ← ∅

4: for j = 1, . . . , Ndiv/2 do

5: λin
min ← 10

log10 (λmax )−log10 (λmin )
Ndiv

(j−1)+log10 (λmin )

6: λin
max ← 10

log10 (λmax )−log10 (λmin )
Ndiv

j+log10 (λmin )

7: λout
min ← 1/λin

max and λout
max ← 1/λin

min

8: solve Eq. (11) for x
in
i and x

out
i (i = 1, . . . , Nint)

9: for X=in,out do

10: set a so that aλX
max = (aλX

min)−1

11: x
′
i ← −zX

i x
X
i

12: for l = 0, . . . , Nmom − 1 do

13: set ŝl from {x
X
i } by Eq. (15b)

14: set ŝ
′
l from {x

′
i} by Eq. (D1b)

15: end for

16: S ← [ŝ0, . . . , ŝNmom−1]
17: S′ ← [ŝ′

0, . . . , ŝ
′
Nmom−1]

18: N ′
eig ← rank S

19: US ← column-space matrix of S

20: U′
S ← column-space matrix of S′

21: �̃A ← [US]†�AUS and �̃B ← [US]†�BUS

22: �̃
′

A ← [U′
S]†�AU′

S and �̃
′

B ← [U′
S]†�BU′

S

23: solve �̃Aψ̃ = λ̃�̃Bψ̃ for {(λ̃k, ψ̃k )}
24: solve �̃

′

Aψ̃
′
= λ̃′�̃

′

Bψ̃
′
for {(λ̃′

k, ψ̃
′

k )}
25: {(λ̃k, ψ̃k )} ← {(λ̃k/a, USψ̃k )}
26: {(λ̃′

k, ψ̃
′

k )} ← {(1/aλ̃′
k, U′

Sψ̃
′

k )}
27: for k = 1, . . . , N ′

eig do

28: ‖r‖2 ← ‖(λ̃k�B − �A)ψ̃k‖2

29: ‖r
′‖2 ← ‖(λ̃′

k�B − �A)ψ̃
′

k‖2

30: if ‖r
′‖2 < ‖r‖2 then

31: (λ̃k, ψ̃k ) ← (λ̃′
k, ψ̃

′

k )
32: end if

33: end for

34: append {(λ̃k, ψ̃k )} to {(λi, ψ i )}
35: Neig ← Neig + N ′

eig

36: end for

37: end for

38: output Neig, {(λi, ψ i )|i = 1, . . . , Neig}
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APPENDIX D: ALGORITHM FOR PRACTICAL CALCULATIONS

In practical calculations, the dividing-and-scaling technique and the interchange technique are used together. Taking into
account the scaling factor a introduced in Sec. II D, Eq. (17) changes to

ŝ
′
l =

1

2π i

∮

Ĉ ′

(ẑ′)l (ẑ′�̂A − �B)−1
udẑ′ (D1a)

≈
1

Nint

Nint∑

i

(ẑ′
i )

l (ẑ′
i�̂A − �B)−1

u︸ ︷︷ ︸
x̂

′
i

, (D1b)

where ẑ′
i = z′

i/a and �̂A = a�A. As is the discussion in Sec. II D, x̂
′
i is identical to x

′
i of Eq. (18).

The algorithm for solving Eq. (8) in the present method incorporating the two computational techniques is shown in
Algorithm 1. Note that the algorithm is described using the nonblock version of the SS-RR method, i.e., Nrhs = 1. The algorithm
using the block version of the SS-RR method can be straightforwardly derived from the algorithm.
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