000858692 001__ 858692
000858692 005__ 20230127125335.0
000858692 0247_ $$2doi$$a10.5194/acp-18-15345-2018
000858692 0247_ $$2ISSN$$a1680-7316
000858692 0247_ $$2ISSN$$a1680-7324
000858692 0247_ $$2ISSN$$a=
000858692 0247_ $$2ISSN$$aAtmospheric
000858692 0247_ $$2ISSN$$achemistry
000858692 0247_ $$2ISSN$$aand
000858692 0247_ $$2ISSN$$aphysics
000858692 0247_ $$2ISSN$$a(Online)
000858692 0247_ $$2Handle$$a2128/20982
000858692 0247_ $$2WOS$$aWOS:000448313100002
000858692 0247_ $$2altmetric$$aaltmetric:50236190
000858692 037__ $$aFZJ-2018-07537
000858692 082__ $$a550
000858692 1001_ $$00000-0003-0221-2122$$aFiore, Arlene M.$$b0$$eCorresponding author
000858692 245__ $$aPeroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships
000858692 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000858692 3367_ $$2DRIVER$$aarticle
000858692 3367_ $$2DataCite$$aOutput Types/Journal article
000858692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545209251_15563
000858692 3367_ $$2BibTeX$$aARTICLE
000858692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858692 3367_ $$00$$2EndNote$$aJournal Article
000858692 520__ $$aAbundance-based model evaluations with observations provide critical tests for the simulated mean state in models of intercontinental pollution transport, and under certain conditions may also offer constraints on model responses to emission changes. We compile multiyear measurements of peroxy acetyl nitrate (PAN) available from five mountaintop sites and apply them in a proof-of-concept approach that exploits an ensemble of global chemical transport models (HTAP1) to identify an observational emergent constraint. In April, when the signal from anthropogenic emissions on PAN is strongest, simulated PAN at northern midlatitude mountaintops correlates strongly with PAN source–receptor relationships (the response to 20% reductions in precursor emissions within northern midlatitude continents; hereafter, SRRs). This finding implies that PAN measurements can provide constraints on PAN SRRs by limiting the SRR range to that spanned by the subset of models simulating PAN within the observed range. In some cases, regional anthropogenic volatile organic compound (AVOC) emissions, tracers of transport from different source regions, and SRRs for ozone also correlate with PAN SRRs. Given the large observed interannual variability in the limited available datasets, establishing strong constraints will require matching meteorology in the models to the PAN measurements. Application of this evaluation approach to the chemistry–climate models used to project changes in atmospheric composition will require routine, long-term mountaintop PAN measurements to discern both the climatological SRR signal and its interannual variability.
000858692 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000858692 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000858692 588__ $$aDataset connected to CrossRef
000858692 7001_ $$0P:(DE-HGF)0$$aFischer, Emily V.$$b1
000858692 7001_ $$0P:(DE-HGF)0$$aMilly, George P.$$b2
000858692 7001_ $$0P:(DE-HGF)0$$aPandey Deolal, Shubha$$b3
000858692 7001_ $$00000-0002-6227-7035$$aWild, Oliver$$b4
000858692 7001_ $$0P:(DE-HGF)0$$aJaffe, Daniel A.$$b5
000858692 7001_ $$00000-0001-7861-1889$$aStaehelin, Johannes$$b6
000858692 7001_ $$00000-0002-1669-9878$$aClifton, Olivia E.$$b7
000858692 7001_ $$0P:(DE-HGF)0$$aBergmann, Dan$$b8
000858692 7001_ $$00000-0002-7419-0850$$aCollins, William$$b9
000858692 7001_ $$0P:(DE-HGF)0$$aDentener, Frank$$b10
000858692 7001_ $$00000-0001-7601-2209$$aDoherty, Ruth M.$$b11
000858692 7001_ $$0P:(DE-HGF)0$$aDuncan, Bryan N.$$b12
000858692 7001_ $$0P:(DE-HGF)0$$aFischer, Bernd$$b13
000858692 7001_ $$0P:(DE-HGF)0$$aGilge, Stefan$$b14
000858692 7001_ $$0P:(DE-HGF)0$$aHess, Peter G.$$b15
000858692 7001_ $$0P:(DE-HGF)0$$aHorowitz, Larry W.$$b16
000858692 7001_ $$00000-0002-4520-5523$$aLupu, Alexandru$$b17
000858692 7001_ $$0P:(DE-HGF)0$$aMacKenzie, Ian A.$$b18
000858692 7001_ $$00000-0001-8922-0234$$aPark, Rokjin$$b19
000858692 7001_ $$0P:(DE-HGF)0$$aRies, Ludwig$$b20
000858692 7001_ $$0P:(DE-HGF)0$$aSanderson, Michael G.$$b21
000858692 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b22
000858692 7001_ $$00000-0003-1552-4715$$aShindell, Drew T.$$b23
000858692 7001_ $$0P:(DE-HGF)0$$aSteinbacher, Martin$$b24
000858692 7001_ $$00000-0002-4745-5673$$aStevenson, David S.$$b25
000858692 7001_ $$00000-0002-8641-1737$$aSzopa, Sophie$$b26
000858692 7001_ $$0P:(DE-HGF)0$$aZellweger, Christoph$$b27
000858692 7001_ $$00000-0002-9356-5021$$aZeng, Guang$$b28
000858692 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-15345-2018$$gVol. 18, no. 20, p. 15345 - 15361$$n20$$p15345 - 15361$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000858692 8564_ $$uhttps://juser.fz-juelich.de/record/858692/files/acp-18-15345-2018.pdf$$yOpenAccess
000858692 8564_ $$uhttps://juser.fz-juelich.de/record/858692/files/acp-18-15345-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858692 909CO $$ooai:juser.fz-juelich.de:858692$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b22$$kFZJ
000858692 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000858692 9141_ $$y2018
000858692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858692 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000858692 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858692 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858692 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858692 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858692 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000858692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000858692 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858692 920__ $$lyes
000858692 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858692 980__ $$ajournal
000858692 980__ $$aVDB
000858692 980__ $$aUNRESTRICTED
000858692 980__ $$aI:(DE-Juel1)JSC-20090406
000858692 9801_ $$aFullTexts