001     858692
005     20230127125335.0
024 7 _ |a 10.5194/acp-18-15345-2018
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a =
|2 ISSN
024 7 _ |a Atmospheric
|2 ISSN
024 7 _ |a chemistry
|2 ISSN
024 7 _ |a and
|2 ISSN
024 7 _ |a physics
|2 ISSN
024 7 _ |a (Online)
|2 ISSN
024 7 _ |a 2128/20982
|2 Handle
024 7 _ |a WOS:000448313100002
|2 WOS
024 7 _ |a altmetric:50236190
|2 altmetric
037 _ _ |a FZJ-2018-07537
082 _ _ |a 550
100 1 _ |a Fiore, Arlene M.
|0 0000-0003-0221-2122
|b 0
|e Corresponding author
245 _ _ |a Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545209251_15563
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Abundance-based model evaluations with observations provide critical tests for the simulated mean state in models of intercontinental pollution transport, and under certain conditions may also offer constraints on model responses to emission changes. We compile multiyear measurements of peroxy acetyl nitrate (PAN) available from five mountaintop sites and apply them in a proof-of-concept approach that exploits an ensemble of global chemical transport models (HTAP1) to identify an observational emergent constraint. In April, when the signal from anthropogenic emissions on PAN is strongest, simulated PAN at northern midlatitude mountaintops correlates strongly with PAN source–receptor relationships (the response to 20% reductions in precursor emissions within northern midlatitude continents; hereafter, SRRs). This finding implies that PAN measurements can provide constraints on PAN SRRs by limiting the SRR range to that spanned by the subset of models simulating PAN within the observed range. In some cases, regional anthropogenic volatile organic compound (AVOC) emissions, tracers of transport from different source regions, and SRRs for ozone also correlate with PAN SRRs. Given the large observed interannual variability in the limited available datasets, establishing strong constraints will require matching meteorology in the models to the PAN measurements. Application of this evaluation approach to the chemistry–climate models used to project changes in atmospheric composition will require routine, long-term mountaintop PAN measurements to discern both the climatological SRR signal and its interannual variability.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fischer, Emily V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Milly, George P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pandey Deolal, Shubha
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wild, Oliver
|0 0000-0002-6227-7035
|b 4
700 1 _ |a Jaffe, Daniel A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Staehelin, Johannes
|0 0000-0001-7861-1889
|b 6
700 1 _ |a Clifton, Olivia E.
|0 0000-0002-1669-9878
|b 7
700 1 _ |a Bergmann, Dan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Collins, William
|0 0000-0002-7419-0850
|b 9
700 1 _ |a Dentener, Frank
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Doherty, Ruth M.
|0 0000-0001-7601-2209
|b 11
700 1 _ |a Duncan, Bryan N.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fischer, Bernd
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gilge, Stefan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Hess, Peter G.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Horowitz, Larry W.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lupu, Alexandru
|0 0000-0002-4520-5523
|b 17
700 1 _ |a MacKenzie, Ian A.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Park, Rokjin
|0 0000-0001-8922-0234
|b 19
700 1 _ |a Ries, Ludwig
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Sanderson, Michael G.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 22
700 1 _ |a Shindell, Drew T.
|0 0000-0003-1552-4715
|b 23
700 1 _ |a Steinbacher, Martin
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Stevenson, David S.
|0 0000-0002-4745-5673
|b 25
700 1 _ |a Szopa, Sophie
|0 0000-0002-8641-1737
|b 26
700 1 _ |a Zellweger, Christoph
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Zeng, Guang
|0 0000-0002-9356-5021
|b 28
773 _ _ |a 10.5194/acp-18-15345-2018
|g Vol. 18, no. 20, p. 15345 - 15361
|0 PERI:(DE-600)2069847-1
|n 20
|p 15345 - 15361
|t Atmospheric chemistry and physics
|v 18
|y 2018
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/858692/files/acp-18-15345-2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/858692/files/acp-18-15345-2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:858692
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21