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Improvement of accuracy in the wave-function-matching method for transport calculations
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The wave-function-matching (WFM) technique for first-principles transport-property calculations was bettered
by Sørensen et al. so as to exclude rapidly decreasing evanescent waves [Sørensen et al., Phys. Rev. B 77,
155301 (2008)]. In their method, the translational invariance of the transmission probability is not preserved
when moving the matching planes between electrode and transition regions, and the sum of transmission and
reflection probabilities does not agree with the number of transport channels in the transition region. The lack of
the translational invariance is caused by the overlap of the layers between the electrode and transition regions. We
reformulate the WFM method by removing the layer overlap, and the translational invariance of the transmission
probability becomes preserved. On the other hand, the error in the sum of transmission and reflection probabilities
is attributed to using pseudoinverses that is accompanied by the exclusion of rapidly decreasing evanescent
waves. We introduce a formulation to calculate the transmission/reflection probability without the pseudoinverses,
resulting in that the sum of the transmission and reflection probabilities exactly agrees with the number of channels,
and the accuracy is largely improved. In addition, we prove that the accuracy in the transmission probability
obtained by our WFM technique is comparable to that obtained by a nonequilibrium Green’s function method.
Furthermore, we carry out electron transport calculations on two-dimensional graphene sheets embedded with
B-N line defects sandwiched between a pair of semi-infinite graphene electrodes and find the dependence of the
electron transmission on the transverse momentum perpendicular to the transport direction.

DOI: 10.1103/PhysRevB.97.115450

I. INTRODUCTION

The study of electron transport in nanoscale systems is be-
coming important as the miniaturization of electronic devices
proceeds because they are expected to exhibit considerably
different transport properties from those of classical conduc-
tors. Owing to the complexity of the problem, such studies
are strongly dependent on the existence of reliable numerical
treatments. A number of numerical methods for calculating
the electron-transport properties of nanoscale systems have
been proposed so far, and some of them are combined with
first-principles calculations. The methods used currently in the
first-principles calculations are roughly categorized into two
approaches. One approach uses the nonequilibrium Green’s
function [1–4]. The relation between the conductance and
Green’s function has been derived within the nonequilibrium
Keldysh formalism [5], and the charge density in the equi-
librium regime of energy is easily computed with the energy
of a nonreal number. The other approach is the so-called
wave-function-matching (WFM) method, which computes the
scattering wave functions (SWFs) providing a direct real-
space picture of the scattering process [6–15]. Both methods
have the computational models in which a transition region
composed of objective nanostructures is sandwiched between
semi-infinitely continuing electrodes. In the Green’s function
formalism, the self-energy terms of the electrodes reflect the
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effect from the semi-infinite electrodes and the perturbed
Green’s functions of the transition region are computed using
the self-energy terms. The conductance of a system is obtained
from the Fisher-Lee formula [16] by using the perturbed
Green’s functions and the self-energy terms of electrodes.
On the other hand, in the WFM method, the conductance is
expressed as a quantum mechanical scattering problem. The
generalized Bloch waves of the electrodes are used to include
the contribution of the semi-infinite electrodes in the WFM for-
mula. The conductance and total transmission probability are
related to the transmission coefficients and the group velocities
of the Bloch waves by the Landauer formula [17]. It has been
proved that the methods are mathematically equivalent [14]
and the conductances obtained by them should be identical.

Several WFM methods have been proposed so far, and their
formulations are slightly different. The computations used to
find the generalized Bloch waves of the electrodes are generally
time consuming and numerically unstable because of treating
the extremely large and small eigenvalues corresponding to the
Bloch factors [11]. On the basis of the physical observation that
only propagating and slowly decaying evanescent waves of the
electrodes contribute to the transmission of electrons, rapidly
decaying evanescent waves can be excluded by introducing a
cutoff parameter for the Bloch factor λmin (λmin ≪ 1) in some
WFM methods [13,18–20]. There have been several discus-
sions on the translational invariance of the transport properties
with respect to moving the matching planes between electrode
and transition regions for the WFM formalism using the cutoff
parameter λmin. Krstić et al. state that Ando’s formulation for
the scattering process lacks translational invariance [6,21], and
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FIG. 1. Schematic illustration of computational model for WFM formalism. The transition region between the two semi-infinite electrodes
represents the objective nanostructures. (a) Model without extra layers in the transition region and (b) model with l extra layers.

later, Khomyakov et al. prove that the translational invariance
is retained when the matching planes are moved [13]. Sørensen
et al. report that the accuracy of transmission probability
is degraded when the rapidly varying evanescent waves are
excluded [18]. In addition, the inconsistency in the numerical
errors between the transmission and reflection probabilities
indicates that the sum of these probabilities does not agree
with the number of transport channels. They also proposed
a method that extends the transition region by attaching extra
layers to both ends so as to converge the transmission/reflection
probability to a certain value. However, from the viewpoint
of the penetration of quantum particles as well as the proof
by Khomyakov et al., the improvement by Sørensen et al.

contradicts the fact that the transmission probability does
not change when the extra layers are added. Therefore, the
problems concerning the translational invariance and the sum
of the transmission and reflection probabilities are important
issues to be resolved for the present WFM methods.

In this paper, we reformulate the WFM formalism because
most of the WFM methods that have been introduced so far
include all the propagating and evanescent waves. Then, we
explore the origin of the deterioration of the translational
invariance presented by Sørensen et al. It is revealed that
the translational invariance deteriorates due to the overlap of
the layers between the electrode and transition regions when
excluding rapidly decreasing evanescent waves. Moreover, the
error in the transmission probability with respect to the number
of extra layers demonstrated in Ref. [18] is not due to the WFM
methods but rather due to the usage of pseudoinverses in the
calculation of transmission coefficients. For a more accurate
calculation of transport properties, we propose a method that
can compute the transmission and reflection probabilities
without inclusion of the rapidly varying evanescent waves
or the extension of the transition region. We find that, in
our WFM formalism, the translational invariance is nicely
preserved, and the sum of the probabilities exactly agrees with
the number of transport channels. We also find that the number
of iterations in solving a continued-fraction equation for the
self-energy terms of the electrodes is closely related to the
number of the extra layers attached to the transition region.
We demonstrate that the numerical accuracy of our WFM
formalism is comparable to that of the nonequilibrium Green’s

function method even when the rapidly varying evanescent
waves are not explicitly computed and the transition region is
not extended. The algorithm of the present method to calculate
the generalized Bloch states, scattering wave functions, and
transmission probability based on the discussion in Sec. II is
described in Fig. S1 in the Supplemental Material [22].

In addition to the improvement of the accuracy in the
WFM calculations, we perform practical electron transport
calculations of two-dimensional graphene sheets embedded
with B-N line defects, which are connected to a pair of
semi-infinite graphene electrodes. Graphene sheets are known
to have only a characteristic band structure at around the
Fermi energy EF, the so-called Dirac cone. This means that
the electrons passing through the junctions are provided only
from the Dirac cone and have a limited range of momenta.
Through the transport calculations, we present the case that
the defect states not matching with the incident-wave modes
do not directly contribute to the electron transport, e.g., through
resonant transport, but they have indirect influence on the
transport properties via hybridization of the Dirac cone and
the defect states.

II. FORMALISM

A. Generalized Bloch waves in electrodes

Let us introduce the WFM formalism for calculating the
solution of the Kohn-Sham equation [31,48] of a system
with a transition region sandwiched between semi-infinitely
continuing crystalline electrodes, as shown in Fig. 1(a). We
assume that in the layers at both ends of the transition region,
which are indexed by 1 and n in Fig. 1(a), physical quantities
such as charge density and potential are converged to those in
the corresponding electrodes. The solution we wish to calculate
is the SWFs specified by particular incident Bloch waves
coming from deep inside the left electrode. The SWFs for the
Bloch waves coming from the right electrode can be obtained
in a similar manner. Since the Kohn-Sham effective potential
in a crystalline electrode is periodic, the wave functions φ(j ) in
the j th unit cell of the electrode satisfy the generalized Bloch
condition,

φ(j ) = λj−iφ(i), (1)
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where i and j are the indices of the unit cell of the crystal.
Making use of the generalized Bloch condition, the wave
functions in the left electrode φ(i) are obtained by solving the
following quadratic eigenvalue problem for the given energy
E [6];

H
†

L,Lφ(i) + λHLφ(i) + λ2HL,Lφ(i) = 0. (2)

Here, HL is the mL × mL full rank matrix for the Hamiltonian
of the periodic unit cell with mL being the number of real-space
grids or bases in a unit cell and HL ≡ ESL − HL with SL being
the overlap matrix of the bases. If one uses a real-space grid
method and norm-conserving pseudopotentials [23], SL is an
identity matrix. HL,L is themL × mL off-diagonal block matrix
of the infinite Hamiltonian of the electrode representing the
coupling between two neighboring unit cells. Because HL,L

is not a full rank matrix in some cases, the rank of HL,L is
represented by the other variable mLL. In the case of mL >

mLL, we assume that HLL is a zero matrix except that the
lower left mLL × mLL block-matrix element is hL,

HL,L =




0 . . . 0
...

. . .
...

h
L

. . . 0


. (3)

This assumption does not affect generality because HLL can be
described using Eq. (3) by the unitary transformation [24,25].
The solution of Eq. (2) is obtained by solving the following
eigenvalue problem:

(
HL H

†

L,L

I 0

)(
φ(i)

φ(i−1)

)
= λ

(
−HL,L 0

0 I

)(
φ(i)

φ(i−1)

)
. (4)

Ando proposed a method of solving Eq. (4) as a standard
eigenvalue problem, computational cost of which is O(m3

L) [6].
In 2008, Sørensen et al. reported a procedure that obtains

selected interior eigenpairs of large-scale general complex
eigenproblems, λmin < |λ| < 1/λmin, by using an iterative
Krylov subspace technique, where λmin is the cutoff parameter
of the Bloch factor [4]. Laux proposed a practical approach
which resolves only eigenpairs within a contour defined in the
complex λ plane [26]. Later, this approach of utilizing contour
integrations was applied to the real-space grid schemes with
some improvements in the Sakurai-Sugiura method [20,27,28].
Although they do not obtain all eigenpairs required to treat
a semi-infinite system, these approaches are valid within the
assumption that only the propagating and slowly decreasing
evanescent waves contribute to the transport properties [13,18].
The alternative method to compute generalized Bloch waves
is introduced in Appendix A.

The generalized Bloch waves are evenly divided into two
groups, and the number of waves in a group is mLL. The
eigenpairs λ−

κ and φ−
(i),κ (λ+

κ and φ+
(i),κ ) represent the group of

the left (right) decreasing evanescent waves |λκ | > 0 (|λκ | < 0)
and left (right) propagating waves |λκ | = 1, where κ is the
index of eigenpairs. We also introduce the Bloch matrix,
which relates the generalized Bloch waves with those in the
neighboring cells,

B±
L = �

±
L(i+1)(�

±
L(i))

−1 = �
±
L(i)�

±
L (�±

L(i))
−1, (5)

where �
±
L = diag[λ±

1 , . . . ,λ±
mLL

] and �
±
L(i) = [φ±

L(i),1, . . . ,

φ±
L(i),mLL

]. Equation (5) leads to the relation,

�
±
L(j ) = (B±

L )j−i
�

±
L(i) = �

±
L(i)(�

±
L )j−i . (6)

Hereafter, the index (i) for the unit cell is left out because it
only affects the trivial Bloch factor in Eq. (6). For the right
electrode, the same quantities are defined with L → R.

B. Expression using transmission and reflection coefficients

In the WFM formalism, the SWFs in the right electrode
region ψn+1,k are expressed as a linear combination of gener-
alized Bloch waves,

ψn+1,k = �
+
R tk, (7)

where tk is an mR-dimensional vector containing the transmis-
sion coefficients and k is the index of the incident waves. The
SWFs in the left electrode region ψ0,k are defined as

ψ0,k = �
−
L rk + φ+

L,k = ψ ref
0,k + ψ in

0,k, (8)

where

ψ ref
0,k = �

−
L rk, (9)

ψ in
0,k = φ+

L,k (10)

with rk being an mL-dimensional vector containing the reflec-
tion coefficients. Here, ψ ref

0,k and ψ in
0,k represent the reflection

and incident waves, respectively. In addition, the transmission
and reflection coefficients are given by

tk = (�+
R )−1ψn+1,k, (11)

rk = (�−
L )−1ψ ref

0,k. (12)

C. Exclusion of rapidly varying evanescent waves

The coefficients for the extremely fast decaying evanescent
waves are very small when the matching planes are set far
from the scatterers. Sørensen et al. split �

± into propagating

and moderately decaying evanescent waves �̃
±

and rapidly

decaying evanescent waves �̊
±

[18]

�
± = [�̃

±
,�̊

±
]. (13)

The SWFs at the first layers of the right and left electrode
regions are rewritten as

ψ+
n+1,k = �

+
a

+
n+1,k = [�̃

+
,�̊

+
]

(
ã

+
n+1,k

å
+
n+1,k

)
, (14)

and

ψ
ref,−
0,k = �

−
a

ref,−
0,k = [�̃

−
,�̊

−
]

(
ã

ref,−
0,k

å
ref,−
0,k

)
, (15)

respectively, where a
±
i,k = [̃a±T

i,k ,å
±T
i,k ]T are vectors that contain

the expansion coefficients of the generalized Bloch waves.
It is computationally demanding and numerically unstable

to obtain all eigenpairs of Eq. (4). To retain numerical accuracy
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TABLE I. Electrode and transition regions for the WFM methods proposed so far.

Left electrode region Transition region Right electrode region

Fujimoto & Hirose [11] . . . ,−1,0 0,1, . . . ,n,n + 1 n + 1,n + 2, . . .

Khomyakov et al. [13] . . . ,−1,0 0,1, . . . ,n,n + 1 n + 1,n + 2, . . .

Sørensen et al. [18] . . . ,0,1 1,2, . . . ,n − 1,n n,n + 1, . . .

Present work . . . ,−1,0 1,2, . . . ,n − 1,n n + 1,n + 2, . . .

without �̊
±

, Sørensen et al. proposed a method that inserts
extra layers in the transition region, as shown in Fig. 1(b).
Making use of the relation B± = �

±
�

±(�±)−1, the SWFs in
the electrode regions are expressed as

ψ+
n+1,k = (B+

R )lψ (0),+
n,k = (�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )l ã(0),+

n,k

(�̊
+
R )l å(0),+

n,k

)
, (16)

ψ
ref,−
0,k = (B−

L )−lψ
ref,(0),−
1,k

= (�̃
−
L ,�̊

−
L

)

(
(�̃

−
L )−l

ã
ref,(0),−
1,k

(�̊
−
L )−l

å
ref,(0),−
1,k

)
. (17)

From Eqs. (11) and (12), we have

tk =
(̃

tk

t̊k

)
= (�̃

+
R ,�̊

+
R

)−1ψ+
n+1,k =

(
(�̃

+
R )l ã(0),+

n,k

(�̊
+
R )l å(0),+

n,k

)
, (18)

rk =
(

r̃k

r̊k

)
= (�̃

−
L ,�̊

−
L

)−1ψ
ref,−
0,k =

(
(�̃

−
L )−l

ã
ref,(0),−
1,k

(�̊
−
L )−l

å
ref,(0),−
1,k

)
.

(19)

The coefficients of the rapidly decaying evanescent waves
vanish when a sufficient number of extra layers are inserted,
because the Bloch factors of the rapidly decaying evanescent
waves, 1/|λ−

L |(< λmin) and |λ+
R |(< λmin), are much smaller

than 1.

(�̊
+
R )l å(0),+

n,k ≈ 0, (20)

(�̊
−
L )−l

å
ref,(0),−
1,k ≈ 0. (21)

Consequently, the SWFs at the first layers of the electrode
regions are rewritten as

ψn+1,k = ψ+
n+1,k = (�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )l ã(0),+

n,k

(�̊
+
R )l å(0),+

n,k

)

≈ �̃
+
R (�̃

+
R )l ã(0),+

n,k , (22)

ψ0,k = ψ ref
0,k + ψ in

0,k,

ψ ref
0,k = ψ

ref,−
0,k = (�̃

−
L ,�̊

−
L

)

(
(�̃

−
L )−l

ã
ref,(0),−
1,k

(�̊
−
L )−l

å
ref,(0),−
1,k

)

≈ �̃
−
L (�̃

−
L )−l

ã
ref,(0),−
1,k

ψ in
0,k = (λ+

L,k)−lφ+
L,k. (23)

The SWFs at the second layers in the electrode regions are
expressed in the same manner:

ψn+2,k = ψ+
n+2,k = (�̃

+
R�̃

+
R ,�̊

+
R�̊

+
R

)

(
(�̃

+
R )l ã(0),+

n,k

(�̊
+
R )l å(0),+

n,k

)

≈ �̃
+
R (�̃

+
R )l+1

ã
(0),+
n,k , (24)

ψ−1,k = ψ ref
−1,k + ψ in

−1,k,

ψ ref
−1,k = ψ

ref,−
−1,k = (�̃

−
L (�̃

−
L )−1,�̊

−
L (�̊

−
L )−1)


(�̃

−
L )−l

ã
ref,(0),−
1,k

(�̊
−
L )−l

å
ref,(0),−
1,k




≈ �̃
−
L (�̃

−
L )−l−1

ã
ref,(0),−
1,k

ψ in
−1,k = (λ+

L,k)−l−1φ+
L,k. (25)

Hereafter, we will leave out the symbols + and − because it
is obvious which generalized Bloch waves are included in the
SWFs when the index of the layer is indicated. In addition, the
index of the incident waves k will be also omitted for notational
simplicity.

D. Boundary condition

Table I summarizes the expressions for the electrode regions
and transition region in the WFM methods proposed so far.
The electrode regions are the layers where the transmitted
and reflected waves are defined by a linear combination of
generalized Bloch waves as in Eqs. (7) and (9), respectively.
The transition region corresponds to the layers in which the
values on real-space grids or coefficients for the atomic bases
of the SWFs are calculated using the WFM procedure. In the
previous WFM methods, the values or coefficients at the edge
layers of the transition region are defined on real-space grids or
expanded using an atomic basis set, whereas they are given by
a linear combination of generalized Bloch waves as a boundary
condition in the electrode regions [e.g., Eqs. (7) and (9)].
As long as the complete set of generalized Bloch waves is
employed, the SWFs determined in the electrode and transition
regions are identical. However, numerical errors will occur
when the rapidly varying evanescent waves are excluded by the
cutoff parameter of the Bloch factor λmin. In our procedure, to
keep numerical rigorousness, the overlap of the layers between
the electrode and transition regions is eliminated.

E. Moving matching plane of wave function matching formula

In Appendix B, the WFM formula [11] for the case that
the rank of HL(HR), mL(mR) and the rank of HL,L(HR,R),
mLL(mRR) are equal is derived. Following the procedure in
Appendix B, the scheme to move the matching plane is intro-
duced in this section. For the case that the rank of HL,L(HR,R),
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mLL(mRR) are not equal is discussed in Appendix C. By letting
Ĥ(0) be the mT -dimensional Hamiltonian for the computational
model without any extra layers [Fig. 1(a)], the Hamiltonian Ĥ(l)

and overlap Ŝ(l) with l extra layers [Fig. 1(b)] are described

by [mT + l(mL + mR)]-dimensional matrices. Using Ĥ(l) and
Ŝ(l), the Green’s function of the isolated transition region
is expressed as Ĝ(l)[=(EŜ(l) − Ĥ(l))−1]. As introduced in
Appendix B, the WFM formula is determined as

(
−G

(l)
1−l,1−lH

†

L,L − (Rref,(l))−1 −G
(l)
1−l,n+lHR,R

−G
(l)
n+l,1−lH

†

L,L −G
(l)
n+l,n+lHR,R − (Rtra,(l+1))−1

)(
ψ ref

0
ψn+1

)
=

(
G

(l)
1−l,1−lH

†

L,Lψ in
0 + ψ

in,(l)
1

G
(l)
n+l,1−lH

†

L,Lψ in
0

)
, (26)

where Rref,(l) = ψ ref
0 (ψ ref,(l)

1 )
−1

, Rtra,(l+1) = ψn+1(ψ (l)
n )

−1
,

G
(l)
i,j is the (i,j )th block-matrix element of the Green’s

function of the isolated transition region Ĝ(l), which is
introduced by Eq. (B3) in Appendix B. The ratio matrices
Rref,(l) and Rtra,(l+1) are obtained by solving the continued
fraction equations

Rref,(l−1) = −(HL + H
†

L,LRref,(l))−1HL,L, (27)

Rtra,(l) = −(HR + HR,RRtra,(l+1))−1H
†

R,R (28)

using the generalized Bloch waves at the deep inside of
electrodes.

The extension of the transition region requires additional
computations because the number of dimensions of the Green’s
functions Ĝ(l) linearly increase with respect to the number
of inserted extra layers. In this subsection, we describe the
procedure to move the matching planes to the inside of the
transition region without loss of accuracy. In Appendix B, the
left (right) matching plane is set between ψ0 and ψ

(l)
1 (ψ (l)

n

and ψn+1). We are going to set the left (right) matching plane
between ψ

(l)
1 and ψ

(l−1)
1 (ψ (l−1)

n and ψ (l−1)
n ). Khomyakov et al.

proved the translational invariance of the total transmission
probability with respect to moving the matching planes to
the inside of the electrode regions [13]. However, when the
matching planes are moved to the inside of the transition

region, we need to treat the rapidly decreasing evanescent
waves, which are excluded from the electrode regions by
introducing the cutoff parameter λmin but contribute to the
SWFs in the transition region.

Using the Kohn-Sham Hamiltonian for the model with l − 1
extra layers, the Hamiltonian for the model with l extra layers
can be rewritten as

EŜ(l) − Ĥ(l)

=




ESL − HL A
(l)
L 0

A
(l)†
L EŜ(l−1) − Ĥ(l−1) A

(l)
R

0 A
(l)†
R ESR − HR




=




HL A
(l)
L 0

A
(l)†
L EŜ(l−1) − Ĥ(l−1) A

(l)
R

0 A
(l)†
R HR


, (29)

where

A
(l)
L = (HL,L,0, . . . ,0), (30)

A
(l)
R = (HR,R,0, . . . ,0). (31)

A
(l)
L (A(l)

R ) is the mL × (mT + (l − 1)(mL + mR))[mR × (mT +
(l − 1)(mL + mR))] zero matrix except that the mL ×
mL(mR × mR) block-matrix element at the left edge is
HL,L(HR,R). Consequently, Eq. (B1) becomes




HL A
(l)
L 0

A
(l)†
L EŜ(l−1) − Ĥ(l−1) A

(l)
R

0 A
(l)†
R HR







ψ
(l)
1

ψ
(l−1)
1
...

ψ (l−1)
n

ψ (l)
n




=




−H
†

L,Lψ0

0
...
0

−HR,Rψn+1




. (32)

Eliminating the first and last block rows yields

(EŜ(l−1) − Ĥ(l−1))




ψ
(l−1)
1
...
...
...

ψ (l−1)
n




=




−H
†

L,Lψ
(l)
1

0
...
0

−HR,Rψ (l)
n




. (33)

Using Ĝ(l−1), Eq. (33) can be rewritten as



ψ
(l−1)
1
...
...
...

ψ (l−1)
n




= Ĝ(l−1)




−H
†

L,Lψ
(l)
1

0
...
0

−HR,Rψ (l)
n




. (34)

In analogy to Eq. (B1), we then have a WFM formula where the
matching planes are shifted by one layer inside of the transition
region.


−G

(l−1)
2−l,2−lH

†

L,L − (Rref,(l−1))−1 −G
(l−1)
2−l,n+l−1HR,R

−G
(l−1)
n+l−1,2−lH

†

L,L −G
(l−1)
n+l−1,n+l−1HR,R − (Rtra,(l))−1




(
ψ

ref,(l)
1
ψ (l)

n

)
=


G

(l−1)
2−l,2−lH

†

L,Lψ
in,(l)
1 + ψ

in,(l−1)
1

G
(l−1)
n+l−1,2−lH

†

L,Lψ
in,(l)
1


. (35)
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Substituting Rref,(l) and Rtra,(l+1) into Eqs. (27) and (28), respectively, we obtain Rref,(l−1) and Rtra,(l). Although the Green’s
function Ĝ(l−1) is required, its dimension is reduced from mT + l(mL + mR) to mT + (l − 1)(mL + mR).

By repeating the shift of the matching planes by using Eqs. (26) and (35) and solving Eqs. (27) and (28) l times, the matching
plane gets set between ψ

ref,(1)
1 and ψ

ref,(0)
1 (ψ (0)

n and ψ (1)
n ) for the left (right) electrode region. The WFM formula is expressed as

(
−G

(0)
1,1H

†

L,L − (Rref,(0))−1 −G
(0)
1,nHR,R

−G
(0)
n,1H

†

L,L −G(0)
n,nHR,R − (Rtra,(1))−1

)(
ψ

ref,(1)
1
ψ (1)

n

)
=

(
G

(0)
1,1H

†

L,Lψ
in,(1)
1 + ψ

in,(0)
1

G
(0)
n,1H

†

L,Lψ
in,(1)
1

)
. (36)

The SWFs in the transition region are computed by substituting
ψ

ref,(1)
1 and ψ (1)

n into Eq. (34).
This result implies that the translational invariance of the

SWFs with respect to moving the matching planes to the inside
of the transition region is preserved even when the rapidly
varying evanescent waves are excluded. In addition, when the
sum of the number of iterations for Eqs. (27) and (28) and
the number of the extra layers are identical, exactly the same
SWFs can be obtained as long as the boundary condition is
properly imposed, as mentioned in Sec. II D. In Sec. III A, we
demonstrate that the translational invariance is not retained
when the transition region and electrode regions overlap as
shown in Table I and the set of generalized Bloch waves is
incomplete.

Finally, let us consider the convergence of Eqs. (27)
and (28). Suppose that the solutions of Eq. (36) with l extra
layers are ψ

ref,(1)
1 and ψ (1)

n and the solutions with l + 1 extra

layers are ψ
′ref,(1)
1 and ψ

′(1)
n , ψ ref,(1)

1 = ψ
′ref,(1)
1 and ψ (1)

n = ψ
′(1)
n

when l is large enough. The first row of Eq. (36) for l extra
layers is

−G
(0)
1,1H

†

L,Lψ
ref,(1)
1 − (Rref,(0))−1ψ

ref,(1)
1 − G

(0)
1,nHR,Rψ (1)

n

= G
(0)
1,1H

†

L,Lψ
in,(1)
1 + ψ

in,(0)
1 . (37)

Inserting ψ
ref,(1)
1 and ψ (1)

n into Eq. (36) for l + 1 extra layers,
we have

−G
(0)
1,1H

†

L,Lψ
ref,(1)
1 − (R

′ref,(0))−1ψ
ref,(1)
1 − G

(0)
1,nHR,Rψ (1)

n

= G
(0)
1,1H

†

L,Lψ
in,(1)
1 + ψ

in,(0)
1 , (38)

where R
′ref,(0) is the ratio matrix of the computational model

with l + 1 extra layers. Subtracting Eq. (38) from Eq. (37), we
obtain

(Rref,(0))−1 = (R
′ref,(0))−1. (39)

Rref,(0) is computed by solving Eq. (27) l + 1 times with the

initial matrix of (�̃
−
L )−1

�̃
−
L (�̃

−
L )−1, while R

′ref,(0) is obtained
by solving Eq. (27) l + 2 times with the same initial matrix.
This indicates that Rref,(0) is uniquely determined when l

is sufficiently large. In other words, by repeatedly solving
Eqs. (27) and (28) until Rref,(0) and Rtra,(1) become consistent,
we obtain Rref,(0) and Rtra,(1) for l → ∞ and the SWFs for a
truly semi-infinite system. The convergence behavior of the
ratio matrix is demonstrated in Appendix D.

F. Transmission probability

The expression of the conductance at zero bias limit is given
by the Landauer-Büttiker formula [17]. The Landauer-Büttiker

formula using the transmission coefficient matrix is

G(E) =
2e2

h
TrT =

2e2

h
Tr[(vin)−1t†vtrat], (40)

where t is an mRR × mk transmission coefficient matrix with
mk being the number of the incident waves, and vin(vtra) is an
mk-(mRR-)dimensional matrix describing the group velocity
of the incident (transmission) waves. In Ref. [14], the group
velocity of the incident waves is written as

vin = a�
in,+†
L Ŵ

(0)
L �

in,+
L , (41)

where

�
in,+
L =

{
φ+

L,1, . . . ,φ
+
L,mk

}
. (42)

The matrix for the group velocity is diagonal when the self-
energy terms of electrodes are exactly obtained. However, due
to the exclusion of the rapidly varying evanescent waves and
numerical error in the computation of the Green’s functions,
the off-diagonal elements do not vanish completely. The group
velocity of the transmitted waves is expressed as

vtra = a(�̃
+
R )†Ŵ(0)

R �̃
+
R . (43)

Here, a is the length of the unit cell and

Ŵ
(l)
L = i

(
�

(l)
L − �

(l)†
L

)
, (44)

where �
(l)
L and �

(l)
R are the self-energy terms of the electrodes,

which are expressed as

�
(l)
L = −H

†

L,LRref,(l), (45)

�
(l)
R = −HR,RRtra,(l+1). (46)

From Eq. (18), the transmission coefficient matrix is obtained
by

tk = (�̃
+
R ,�̊

+
R

)−1ψ
(1)
n,k ≈ (�̃

+
R ,0̊)−1ψ

(1)
n,k, (47)

and

t =
(
t1, . . . ,tmk

)
. (48)

Khomyakov et al. and Sørensen et al. instructed one to use the

pseudoinverses for (�̃
+
R ,0̊) [13,18]. However, the SWFs ψ

(1)
n,k

include the components of �̊
+
R , because they are determined on

real-space grids or linear combinations of bases in the transition
region. In addition, as we show in Appendix E, translational
invariance is not retained when the pseudoinverses are used in
the computation of the transmission coefficients in Eq. (47).
Therefore, we introduce �

′+
R so that

�̌
+
R = (�̃

+
R ,�

′+
R

) (49)
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becomes a regular matrix. Using �̌
+
R , we define

v̌tra = a(�̌
+
R )†Ŵ(0)

R �̌
+
R , (50)

ťk = (�̌
+
R )−1ψ

(1)
n,k, (51)

ť =
(
ť1, . . . , ťmk

)
. (52)

Substituting Eqs. (50)–(52), we have

T = (vin)−1 ť†v̌tra ť = (vin)−1t†vtrat. (53)

The transmission matrix is invariant when one takes �
′+
R so that

�̌
+
R is a regular matrix. The proof is given in Appendix F. Very

often one is only interested in the conductance. In that case one
can skip the computation of the transmission coefficients. The
kth diagonal element of the transmission matrix Tk,k is given
by

Tk,k =
(
vin

k,k

)−1
ť
†
k v̌tra

ťk

= a
(
vin

k,k

)−1[
(�̌

+
R )−1ψ

(1)
n,k

]†
(�̌

+
R )†Ŵ(0)

R �̌
+
R (�̌

+
R )−1ψ

(1)
n,k

= a
(
vin

k,k

)−1
ψ

(1)†
n,k Ŵ

(0)
R ψ

(1)
n,k, (54)

where vin
i,j is the (i,j )th element of vin. Analogous to the

transmission matrix and probability, the reflection matrix
and probability can be obtained from ψ

ref,(1)
1,k . Note that the

transmission probability is given only from ψ
(1)
n,k and Ŵ

(0)
R .

This is contrastive to the nonequilibrium Green’s function
method, which uses the Green’s function of the transition
region being expensive to be calculated. Section III B describes

the efficiency of using the inverse of a regular matrix �̌
+
R

instead of the pseudoinverse of �̃
+
R .

III. NUMERICAL EXAMPLE

A. Translational invariance of transmission probability

with respect to moving matching plane

Sørensen et al. proposed a method that extends the transition
region by inserting extra layers to improve the accuracy of the
WFM technique [18]. Insertion of the extra layers corresponds
to moving the matching plane to the inside of the electrode
region. From the problem of the penetration of quantum
particles into a one-dimensional square potential barrier on the
basis of quantum mechanics, it is obvious that the transmission
probability does not depend on the position of the matching
plane. Translational invariance is retained as long as all the
generalized Bloch waves are included for the WFM procedure.
When the rapidly decreasing evanescent waves are excluded by
the cutoff parameter λmin, it is not trivial whether the invariance
is kept at the boundary between the electrode and transition
regions. Khomyakov et al. proved the translational invariance
with respect to moving the matching plane toward the electrode
region [13]. Moving the matching plane to the electrode side is
straightforward because the excluded evanescent waves do not
contribute to the SWFs anymore. When the planes are moved
into the transition region, one needs to consider the contribution
of the excluded evanescent waves because the waves do not
vanish in the transition region.

FIG. 2. Computational model where one B-N zigzag ring is
sandwiched between a couple of (9,0) CNT electrodes. The light blue,
dark brown, and green balls are N, C, and B atoms, respectively.

As an example of a practical calculation, we will examine
the transport properties of a (9,0) B-N nanotube sandwiched
between (9,0) carbon nanotubes (CNTs). Figure 2 shows the
computational model. The x and y axes are the directions
perpendicular to the nanotube, and the z axis is parallel to
the nanotube. A valence electron-ion interaction is treated by
norm-conserving pseudopotentials generated by the scheme
proposed by Troullier and Martins [23,29]. The local density
approximation [30] of the density functional theory [31,32] is
used to describe the exchange and correlation effects. We use
the real-space finite-difference method for the first-principles
calculation implemented in the first-principles calculation code
RSPACE [12,33–35], which enables us to calculate the transport
properties of nanostructures between the semi-infinite elec-
trodes. In the real-space grid formalism, mL (mR) is not equal
to mLL (mRR). For that reason, the procedure described in
Appendix C is used. The central finite-difference formula [36]
(N = 1 in Ref. [37]) is used for the second-order derivation
arising from the kinetic-energy operator in the Kohn-Sham
equation. A conventional supercell under periodic boundary
conditions in all directions with a real-space grid spacing
of ∼0.24 Å is used to determine the Kohn-Sham effective
potential. The dimensions of the supercell are set as Lx =
Ly = 13.34 Å, and Lz = 4.32 Å for the electrode regions

and Lx = Ly = 13.34 Å, and Lz = 8.64 Å for the transition
region. Here, Lx and Ly are the lateral lengths of the supercell
in the x and y directions, respectively, and Lz is the length in
the z direction. Propagating and slowly decaying evanescent
states of the semi-infinite electrodes are calculated using
the method in Ref. [24]. Table II shows the transmission
probability with respect to the number of extra layers l and
the number of iterations for the continued-fraction equations
[Eqs. (C19) and (C20)] Nit . Since all the WFM methods
proposed so far use the same boundary conditions between the
electrode and transition regions, we use the method proposed
by Fujimoto and Hirose [11]. To eliminate the numerical
error caused by the pseudoinverses, all the generalized Bloch

waves are included in �̃
+
R for Eq. (47). In the conventional

WFM formalisms, the computation of the continued-fraction
equations is skipped when the extra layer is not inserted
because ψ

ref,(l)
1 (ξ1)(ψ ref

0 (ξ3))−1 and ψ (l)
n (ξ3)(ψn+1(ξ1))−1 in

Eq. (C5) can be obtained as �̃
−
L (ξ1)((�̃

−
L )−1

�̃
−
L (ξ3))−1 and

�̃
+
R (ξ3)(�̃

+
R�̃

+
R (ξ1))−1, respectively, owing to the overlap of the

layers in the transition and electrode regions. One can see that
while the translational invariance deteriorates between Nit = 0
and Nit = 1 in the conventional WFM methods, it is retained
nicely in the present method. The translational invariance is
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TABLE II. Transmission probability with respect to the number
of extra layers l and number of iterations for the continued-fraction
equations Nit for (9,0) B-N nanotube between (9,0) CNTs.

λmin l Nit Conventional method Present method

0.90 3 0 0.52046191 0.52046575
2 1 0.52045862 0.52046575
1 2 0.52045862 0.52046575
0 3 0.52045862 0.52046575
2 0 0.52044949 0.52045862
1 1 0.52044135 0.52045862
0 2 0.52044135 0.52045862
1 0 0.52041587 0.52044135
0 1 0.52039468 0.52044135

0.65 3 0 0.52046511 0.52046809
2 1 0.52046378 0.52046809
1 2 0.52046378 0.52046809
0 3 0.52046378 0.52046809
2 0 0.52045659 0.52046378
1 1 0.52045277 0.52046378
0 2 0.52045277 0.52046378
1 0 0.52043133 0.52045277
0 1 0.52042062 0.52045277

0.10 2 0 0.52047069 0.52047070
1 1 0.52047070 0.52047070
0 2 0.52047070 0.52047070
1 0 0.52046908 0.52047070
0 1 0.52047028 0.52047070

destroyed by the inconsistency of the SWFs at the overlapping
layers; the deterioration is suppressed when λmin is small or l

is large.
From these results, we can conclude that the overlap

between the electrode and transition region should be removed
to maintain the translational invariance of the transmission
probability. However, the numerical error caused by the de-
terioration of the translational invariance of the transmission
probability is small and is not the origin of the degradation
of the accuracy when the transition layer is not extended as
reported in Ref. [18].

B. Accuracy of the transmission matrix and probability

obtained by SWF

In Sec. II F, we described a method for calculating the
transmission and reflection probabilities without the pseudoin-
verses. Here, to demonstrate the accuracy of this method and
the degradation due to the pseudoinverses, we examine the
variations in the transport properties with respect to the number
of extra layers l and cutoff parameter of the evanescent waves
λmin. The computational model is the same as in Sec. III A. To
eliminate the unfavorable effect from the convergence of the
ratio matrices on the SWFs, the ratio matrices are converged us-
ing the continued-fraction equations Eqs. (C19) and (C20). The
behaviors of the transmission probability, transmission matrix,
and the sum of the transmission and reflection probabilities
with respect to the number of extra layers l are plotted in Fig. 3.
We can see that the translational invariances of the transmission
probability and transmission matrix are well preserved and the
sum of the probabilities exactly corresponds with the number
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FIG. 3. Difference in transmission probability and matrix and
error in the sum of the transmission and reflection probabilities with
respect to the number of extra layers l.
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FIG. 4. Difference in the transmission probability from that ob-
tained by the nonequilibrium Green’s function method with respect
to the cutoff parameter of the evanescent waves λmin.

of channels in the present method. On the other hand, the
transmission probability and transmission matrix probability
are clearly affected by the number of extra layers when the
pseudoinverses are used. Moreover, the sum of the transmis-
sion and reflection probabilities does not correspond to the
number of channels, indicating that the pseudoinverses degrade
the accuracy. Figure 4 shows the difference in the transmission
probability from that obtained by the nonequilibrium Green’s
function method with respect to the cutoff parameter λmin of
the evanescent waves. We can conclude that the accuracy of the
WFM technique on the transmission probability is comparable
with that of the nonequilibrium Green’s function method even
when the rapidly varying evanescent waves (|λ| < λmin or
1/λmin < |λ|) are not explicitly computed and the transition
region is not extended.

When transmission spectra are plotted by the calculation
without evanescent waves, problems concerning accuracy
occur at the energy where the number of propagating waves
changes, because the number of the waves, which are used
to expand the SWFs and affect the accuracy of the SWFs,
suddenly increases or decreases. The channel transmission of
a graphene sheet with a B-N line defect, which is referred to
as Model 1a in the following section, varies smoothly over
the energy range that two electronic bands transit from the
propagating wave to the evanescent one and the number of
propagating waves decreases from three to one. In addition, the
error in the sum of the transmission and reflection probabilities,
|1 − (R + T )|, in this energy range is at the level of 10−9 to
10−14, which is comparable to the errors in the other energies.
Therefore, we conclude that the degradation of the accuracy
does not occur in transmission spectra. See Fig. S2 in the
Supplemental Material [22] for more details about the error
evaluation.

A B

x

z

T1

a b4b

a1a1

a2a2

d1

(a) Calculation Model 1

C

x

z

T2

ab 6a

a1a1 a2a2

d2d2

(b) Calculation Model 2

kz

kx

K

MГ
K’

(d) Brillouin zone
     of unit cell B

kz

kx

K

M
Г

K’

(c) Brillouin zone 
     of unit cell A

kz

kx

K
MГ

K’

(e) Brillouin zone 
     of unit cell C

FIG. 5. Schematic representations of graphene sheets with B-N
line defects and Brillouin zones of graphene electrodes. In panels (a)
and (b), C atoms are at the corners of the hexagons, and the small
solid and open circles denote B atoms and the large ones N atoms.
The heteroatoms form a zigzag- or armchair-shaped B-N line defect
in each graphene sheet. The dashed lines define the unit cells of the
transition regions (T1 and T2) and those of the electrode unit cells (B,
and C) with a = 2.46 Å (4.65 aB) and b =

√
3a, while the rhombus

labeled A represents the primitive unit cell of a pristine graphene
sheet. The vectors d1 and d2 denote the translation vectors of the
electrode unit cells B and C, respectively. The set of vectors (a1,a2)
is the primitive translation vectors. Panels (c)–(e) illustrate the first
Brillouin zones of the electrode unit cells A, B, and C, respectively.
The symbols Ŵ, M, K, and K′ in panel (c) represent the high-symmetry
points, and those in panels (d) and (e) represent the equivalent points
after folding the hexagonal Brillouin zone.

IV. APPLICATION

In this section, we present an application of the ballistic
electron transport calculation method discussed in the previous
sections to two-dimensional materials composed of graphene
sheets. Graphene is a well-known two-dimensional (2D) ma-
terial, and it has been extensively studied for a number of
decades [38–41]. Recently, graphene sheets with structural
defects, such as pentagon, septagon, octagon rings, and chem-
ical defects, such as substitutional defects with B and/or N
atoms, have attracted a great deal of interest [42–45]. Here, we
examine in-plane electron transport of graphene sheets with
B-N line defects.

Figures 5(a) and 5(b) show schematic representations of
two different calculation models employed in this study. The
first model depicted in Fig. 5(a) is referred to as Model 1
hereafter. Model 1 has C-C bonds parallel to the z axis and a
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zigzag-shaped B-N line defect along the x direction. On the
other hand, the second model, depicted in Fig. 5(b), has C-C
bonds perpendicular to the z axis and an armchair-shaped B-N
line defect along the x direction. We examine two different
widths of the line defects for each model, i.e., one is a
single-width line defect as indicated by the solid circles in
Figs. 5(a) and 5(b), and the other is a double-width one as
indicated by both solid and open circles in Figs. 5(a) and 5(b).
The calculation models with the single-width line defect have
the suffix “a,” i.e., Model 1a and Model 2a, and those with
the double-width one the suffix “b,” i.e., Model 1b and Model
2b. Although the primitive unit cell of a graphene sheet used
for the electrodes is a rhombus containing two carbon atoms
[see rhombus A in Fig. 5(a)], we employ a rectangular unit cell
containing four carbon atoms as the unit cell of the graphene
electrodes [see rectangle B in Fig. 5(a)]. The transition region
of Model 1 is defined as rectangle T1, and the length in the z

direction is four times that of the electrode unit cell B so that
the B-N line defect is at the middle of T1, as shown in Fig. 5(a).
For the other graphene sheet depicted in Fig. 5(b), we define
the electrode unit cell as the rectangular four-atom unit cell C
and the transition region as rectangle T2. The length of T2 in
the z direction is six times that of the electrode unit cell C, so
that Model 2 has the B-N line defect at the middle of T2, as
shown in Fig. 5(b).

As for the primitive rhombus two-atom unit cell of a
graphene sheet, which is indicated by A in Fig. 5(a), it is known
that the first Brillouin zone is hexagonal and the high-symmetry
K and K′ points appear at the corners of the hexagon as
represented in Fig. 5(c), where charge carriers are characterized
by a linear dispersion in momentum-energy (k-E) space, and
the electronic bands form the Dirac cone around the Fermi
energy EF . Here, we use rectangular four-atom unit cells B
and C instead of the primitive two-atom unit cells, and thus,
the hexagonal Brillouin zone is folded into a rectangular zone,
as depicted in Figs. 5(d) and 5(e). As a consequence of the
folding, the high-symmetry K and K′ points appear inside the
rectangular Brillouin zones, as indicated in Figs. 5(d) and 5(e).

Figure 6 shows the electronic band structure of a graphene
sheet around the Fermi energy EF, as calculated with the
rectangular four-atom unit cell. The band structure is in good
agreement with that calculated by a tight-binding approach
with the rectangular four-atom unit cell [46]. The Dirac points
are clearly visible at the K and K′ points in the rectangular
Brillouin zone. In the energy window between −1 eV and +1
eV, one can see only the electronic states forming the Dirac
cone, meaning that the graphene electrodes have conducting
electrons with their momentum around the K and K′ points
within the energy window. More specifically, in the case
of Model 1, since the Dirac points are at the K and K′

points in Fig. 5(d), i.e., (kx,kz) = (±1/3,0) [47], the electrons
conducting through the graphene electrodes and entering T1
have transverse momenta only around kx = ±1/3. In the case
of Model 2, the Dirac points are at the K and K′ points in
Fig. 5(e), i.e., (kx,kz) = (0,±1/3), and hence, the conducting
electrons of the graphene electrodes have transverse momenta
only around kx = 0. Transverse momenta and energies allowed
for the electrons conducting through pristine graphene sheets
are schematically represented by the gray triangles in Figs. 6(b)
and 6(c), referred to as the Dirac triangles hereafter. The
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FIG. 6. Electronic band structure of a pristine graphene sheet
calculated with the rectangular four-atom unit cell, as illustrated in
Figs. 5(a) and 5(b). In panel (a), the axis k1(2) corresponds to the axis
kx(y) in Fig. 5(d), and the axis ky(x) in Fig. 5(e). L1 and L2 denote the
lengths of the short and long sides of the rectangular four-atom unit
cell, i.e., L1 = a and L2 = b =

√
3a, respectively. The Dirac points

are labeled K and K′. Panels (b) and (c) depict projections of the
band structure on the transversal momentum-energy (kx-E) plane for
Model 1 and 2, respectively. The gray areas are referred to as Dirac
triangles in the text.

Dirac triangles agree well with the classification of graphene
transport behavior by Yazyev and Louie [42]. According to
the classification, Model 1 is class Ib, because the translation
vector d1 [see Fig. 5(a)] has the index (n,m) = (1,0) satisfying
n − m 
= 3q. On the other hand, Model 2 is class Ia, because the
translation vector d2 [see Fig. 5(b)] has the index (n,m) = (1,1)
satisfying n − m = 3q.

The electron transport calculations of the graphene
sheets with the B-N line defects are carried out using the
code [11,12,15,24,25] incorporating the aforementioned tech-
nique together with the WFM method based on the density
functional theory [31,32,48]. The generalized Bloch wave
functions and scattering wave functions are determined in a
non-self-consistent manner to a set of given potential and
pseudopotential parameters, which are used for constructing
the Kohn-Sham matrix ES − H in Eqs. (2) and (B1) for the
electrode and transition regions, respectively. In the calculation
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of the generalized Bloch states of the graphene electrodes,
we adopt the cutoff parameter λmin = 0.316. Electron trans-
mission is determined from the scattering wave functions
using Eq. (54). The effective potential and pseudopotential
parameters are determined in advance under periodic bound-
ary conditions by using the electronic structure calculation
code RSPACE [12,33–35], which is based on the real-space
finite-difference formalism [36,37], as well as the transport
calculation code, in order to treat the physical quantities on the
same footing. The interaction between the valence electrons
and atomic nuclei is treated through the projector-augmented
wave pseudopotential method proposed by Blöchl [49,50], and
the exchange-correlation interaction is calculated using the
local density approximation proposed by Vosko, Wilk, and
Nasair [51], which is within the framework of the density
functional theory [31,32,48]. In electron transport calculations
we assume that incident electron waves are injected from the
left electrode.

Before discussing the physics in electron transport through
the graphene sheet with a B-N defect, we briefly mention
about the error in the sum of the transmission and reflection
probabilities. The error obtained by the present method using
regular inverses is confirmed to be at the order of 10−14 to
10−10, and that obtained by the conventional method using
pseudoinverses is of 10−3 to 10−1, which is similar to the case
of l = 0 in Fig. 4. See Fig. S3 in the Supplemental Material [22]
for the detailed values. Taking into account that it is time
consuming to compute a large number of evanescent waves
or the SWFs of a transition region with extra layers, we can
conclude that the error obtained by the conventional method
is too large to discuss the electron transmission and reflection
probabilities of the systems considered here.

Let us move to the discussion on the electron transport
properties of the graphene sheets. Firstly, we consider electron
transport through a pristine graphene sheet without any defects.
As one can see from Fig. 5(d), the rectangular Brillouin zone of
the graphene electrode for Model 1 has Dirac points on the line
kz = 0, and thus, a half of each Dirac cone belongs to the longi-
tudinal momentum kz > 0 and the other half kz < 0. Therefore,
only the electrons belonging to the half Dirac cones at one side
propagate in the positive z direction, and those belonging to the
half Dirac cone at the other side in the negative z direction. This
means that there is only one incident wave toward the transition
region from an electrode for every transverse momentum kx

and energy E. Consequently, when T1 is composed only of a
pristine graphene sheet without any heteroatoms, the electron
transmission is uniform and quantized to 1 over the Dirac
triangles on a kx-E plane, as represented in Fig. 6(b). Now we
discuss the electron transport through the graphene sheets with
single and double zigzag-shaped B-N line defects. The electron
transmission of Models 1a and 1b are shown as functions of
the transverse momentum kx and the energy E in Figs. 7(a)
and 7(b), respectively. One can easily see that the transmission
quantization does not appear when a zigzag-shaped B-N line
defect is in T1. More specifically, the contour maps show that
the electron transmission has a broad and nonquantized peak
for the transverse momentum kx < K and decreases toward
the Dirac cone at Kx > K. This implies that the dependency
of the electron transmission on the transverse momentum kx

emerges due to the introduction of B-N line defects. Comparing
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FIG. 7. Electron transmissions of graphene sheets with zigzag-
shaped B-N line defect [Model 1 in Fig. 5(a)]. In panels (a) and
(b), electron transmission contours are plotted as functions of the
transverse momentum kx and energy E with respect to the Fermi
energy EF for Model 1a and 1b, respectively. The solid curves describe
the Dirac bands of a pristine graphene sheet around the Dirac point
K. In panel (c), the transmission spectra per unit length Å for Models
1a and 1b are plotted together with the transmission spectrum of a
pristine graphene sheet. The data points indicated by the solid and
open squares are evaluated from Eq. (56), and the data points around
the Fermi energy EF are not evaluated because of too few sampling
points.

the two electron transmission contours, one can see that only
the magnitude of the electron transmission changes and the
tendencies of the transmission distributions over the kx-E plane
are almost the same, when the width of the B-N line defect is
changed.

Figure 7(c) shows the electron transmission per unit length
Å for Model 1a, 1b, and a pristine graphene sheet as a function
of the energy of incident electrons. The electron transmission
spectrum T (E) is, in general, evaluated by integrating the to-
tal electron transmission function Ttotal(kx,E) =

∑
i Ti(kx,E)

over the transverse momentum kx , where Ti(kx,E) represents
the electron transmission of the ith transmission channel:

TBN@Gr(E) =
∑

i

∫ +π/Lx

−π/Lx

Ti(kx,E)dkx (55)

≈
1

N

2π

Lx

∑

i,j

Ti(kx,j ,E). (56)
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Lx is the length of the unit cell in the x direction, and Lx = a

for Model 1. In the practical evaluation, we use Eq. (56) in
which j indicates a discrete point in the transverse momentum
kx . In the case of a pristine graphene sheet, the total electron
transmission is known to be uniformly quantized over the Dirac
triangles, and therefore, the electron transmission spectrum is
expressed in a simple form using the width of the Dirac triangle
in the kx direction, WD(E), as

TGr(E) = 2WD(E)
2π

Lx

, (57)

where the factor 2 arises from the fact that two Dirac cones
centered at K and K′ have to be considered. One can see from
Fig. 7(c) that introducing/widening the B-N line defect dras-
tically decreases the transmission values, though the linearity
of the transmission spectra of the pristine graphene sheet is
preserved.

In the case of Model 2, the Dirac cones center at (kx,kz) =
(0,±1/3) as seen in Fig. 5(e) and overlap each other on a kx-E
plane. Therefore, there are four electron waves propagating in
the z direction for every transverse momentum kx and energy
E. Two of them are heading toward the transition region, and
the other two are in the opposite direction. Consequently, the
electron transmission of a pristine graphene sheet without any
heteroatoms is uniform and quantized to 2 over the Dirac
triangles on a kx-E plane, as represented in Fig. 6(c). The
electron transmission of the graphene sheets with the single
and double armchair-shaped B-N line defects, i.e., Models 2a
and 2b, are shown as functions of the transverse momentum kx

and the energy E in Figs. 8(a) and 8(b), respectively. Similar to
the case of Model 1, the contour maps exhibit that the electron
transmission is drastically reduced by the introduction of the
armchair-shaped B-N line defects; the electron transmission
values especially around kx = 0 decrease more than those at
around the edges of the Dirac triangles. However, the variation
in the electron transmission over the Dirac triangles is not as
large as in the case of Model 1.

The electron transmission spectra per unit length Å for
Models 2a, 2b, and a pristine graphene sheet are drawn as
a function of the energy of incident electrons in Fig. 8(c). The
electron transmission spectrum for the pristine graphene sheet
is evaluated using Eq. (57) with Lx = b =

√
3a; however,

the factor 2 in this case means the two propagating waves
entering T2 for every transverse momentum kx and energy
E. The other two transmission spectra for Models 2a and 2b
are evaluated from the electron transmission values plotted in
Figs. 8(a) and 8(b) using Eq. (56). The electron transmission
spectra for Models 2a and 2b are almost linear and there
appear to be no transmission peaks and valleys caused by the
resonance/antiresonance of incident electron waves with the
defect states, as is the case in Models 1a and 1b. Comparing
the electron transmission spectra for Models 1 and 2, one
can suppose that the graphene sheet with the B-N defects
has almost isotropic electron transport properties as does the
pristine graphene sheet, because the electron transmission
spectra for the graphene sheets with the single (double)
zigzag- and armchair-shaped B-N defects agree well with each
other.

Now, let us investigate the difference between Models 1
and 2 as regards the variation in the electron transmission

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

k
x
 (2̟/L

x
)

E
ne

rg
y 
E

-E
F
 (

eV
)

(a) Model 2a

1.00

0.00

-0.10 Г,M 0.10
k
x
 (2̟/L

x
)

(b) Model 2b

0.20

0.00

-0.10 Г,M 0.10

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

is
si

on
 T

 (
/Å

)

Energy E-E
F
 (eV)

(c)

Model 2a

pristine graphene

Model 2b

FIG. 8. Electron transmissions of the graphene sheets with
armchair-shaped B-N line defect [Model 2 in Fig. 5(b)]. In panels
(a) and (b), electron transmission contours are plotted as functions
of the transverse momentum kx and energy E with respect to the
Fermi energy EF for Models 2a and 2b, respectively. The solid curves
describe the Dirac bands of a pristine graphene sheet around the Dirac
point K. In panel (c), the transmission spectra per unit length Å for
Models 2a and 2b are plotted together with the transmission spectrum
of a pristine graphene sheet. The data points indicated by the solid and
open squares are evaluated from Eq. (56), and the data points around
the Fermi energy EF are not evaluated because of too few sampling
points.

values inside the Dirac triangles, which have been mentioned
together with the electron transmission contours in Figs. 7
and 8. Figures 9(a) and 9(b) illustrate typical electron trans-
mission profiles of Models 1a and 2a extracted from the
contour maps in Figs. 7(a) and 8(a), respectively. The electron
transmission of Model 1a rapidly increases to T = 0.64 as the
transverse momentum kx increases from 0.25 to 0.3, while it
gradually decreases as the transverse momentum kx changes
from 0.3 to 0.4 through the K point. On the other hand,
the electron transmission of Model 2a rapidly increases up
to T = 0.92 around the transverse momentum kx = ±0.1,
and then it gently decreases toward the center kx = 0. This
variation in the electron transmission profile for Model 2a
can also be seen in the channel-decomposed transmission
profiles; in particular, the transmission profile for the second
channel preserves the original rectangular-shaped electron
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FIG. 9. Typical electron transmission profiles of graphene sheets
with single zigzag- and armchair-shaped B-N line defects. The
electron transmissions are extracted from Fig. 7(a) and 8(a) for the
energy of −0.8 eV. Panel (b) illustrates the first- and second-channel
transmission profiles as well as the total one.

transmission profile of the pristine graphene sheet. We can
say that the electron transmission of Model 1a depends on
the transverse momentum kx more significantly than that of
Model 2a.

Let us discuss the electron-transmission dependence on the
transverse momentum kx from the viewpoint of the electronic
band structures of the transition regions T1 and T2, which are
calculated under periodic boundary conditions. Figures 10(a)
and 10(b) depict the electronic band structures projected
onto kx-E planes for the transition regions T1 and T2 of

Models 1a and 2a, respectively. From the electronic band
structure of Model 1a, one can easily see that the original band
structure of the pristine graphene sheet is largely deformed by
the introduction of the zigzag-shaped B-N line defect. This
deformation is attributed to hybridization of the Dirac cone
states with defect states, because the spatial distribution of the
electronic state changes between localized and delocalized as
the transverse momentum kx changes as shown in Fig. 10(c).
More specifically, the electronic states for the transverse
momentums kx = 0.4 and 0.5 are localized around the defect,
while those for kx = 0.2 and 0.3 are delocalized over the
transition region T1. Note that the spatial distribution of the
ith electronic state, ρi(z,kx), is evaluated by

ρi(z,kx) =
∫∫∫

BZ
|ψi(x,y,z,kx,kz)|2dkzdxdy, (58)

where BZ denotes the Brillouin zone and ψ is the Kohn-
Sham wave function obtained from the electronic structure
calculations under the periodic boundary conditions. Conse-
quently, the influence of the localized defect states on the
electron transmission depends on the transverse momentum
kx in the case of Model 1a. On the other hand, in the case
of Model 2a, there is no drastic deformation of the band
structures caused by the introduction of the armchair-shaped
B-N line defect. Moreover, in Fig. 10(d), it can be seen that
the electronic states are delocalized over the transition region
T2 within the transversal-momentum range from kx = 0 to
kx = 0.1. These facts imply that the defect states exist far
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FIG. 10. Electronic band structures and spatial distributions of electrons in the bands. The electronic band structures are calculated for the
transition regions T1 and T2 in Fig. 5 under application of periodic boundary conditions. In panels (a) and (b), the electronic band structures as
functions of momentums kx and kz are represented as projections onto the kx-E planes for Models 1a and 2a, respectively. The solid and open
symbols denote the eigenenergies at kz = 0 and kz = 0.5, respectively. The solid curves diagonal to the panels represent the Dirac triangles.
Panels (c) and (d) show the spatial distributions of electrons belonging to respective transversal momentum kx . In panels (b) and (d), since two
electronic bands appear in this energy window, the valence and conduction bands close to the Fermi energy EF are drawn in red and the others
in blue.

115450-13



SHIGERU TSUKAMOTO, TOMOYA ONO, AND STEFAN BLÜGEL PHYSICAL REVIEW B 97, 115450 (2018)

away from the transverse momentum kx and the energy E

presented in Fig. 10(b), and hence, the influence on the electron
transmission is less dependent on the transverse momentum
kx . In addition, since no localized defect state exists inside
the Dirac triangles shown in Figs. 10(a) and 10(b), resonant
electron transport with a quantized transmission value does
not occur in Figs. 7(a) and 8(a).

From the electronic band structures in Figs. 10(a) and 10(b),
one may expect that the electron transmission is forbidden at
certain energy ranges, for instance, E < −0.8 eV at kx = K
in the case of Model 1a, because of the presence of the band
gap. This can be explained by imagining an extension of the
supercell T1 or T2 in the z direction to separate the interval
between the B-N line defects in the neighboring supercells.
As the supercell length Lz increases, the band dispersion
of the delocalized states asymptotically approaches that of
a pristine graphene sheet, while the localized defect states
form dispersionless flat bands in the longitudinal momentum
kz direction. A consequence of this thought experiment is that
electrons with energy E and transverse momentum kx within
the Dirac triangles are allowed to enter the graphene sheets
with B-N line defects sandwiched between the semi-infinite
graphene electrodes and to pass through them with a certain
transmission probability, which depends on the influence of the
localized defect states, as discussed in the previous paragraph.

V. CONCLUSION

We reformulated the WFM method for first-principles
transport-property calculations so as to exclude the rapidly
decreasing evanescent waves because the original WFM meth-
ods are formulated to include all the generalized Bloch waves.
Sørensen et al. had reported that the transmission probability
varies when increasing the number of extra layers attached
to the transition region, and the errors in the transmission
and reflection probabilities are inconsistent to each other.
These results indicate that the translational invariance of the
transmission probability with respect to moving the matching
planes is not preserved and the sum of these probabilities is
not equal to the number of channels in their WFM method.
We found that the translational invariance deteriorated as
a result of the overlap of the layers between the electrode
and transition regions and the exclusion of the rapidly de-
creasing evanescent waves. Due to the incomplete set of
the generalized Bloch waves, pseudoinverses were used to
calculate the transmission and reflection probabilities in the
conventional WFM methods and caused degradation of the
accuracy. We proposed a method that eliminates the overlap
of the layers between the transition and electrode regions
and computes the transmission probability from the SWFs
without the pseudoinverses and the Green’s function of the
transition region. The proposed method nicely recovers the
translational invariance of the transmission probability with
respect to insertion of the extra layers and gives transmission
and reflection probabilities whose sum exactly agrees with the
number of channels. We also demonstrated that the accuracy
of the transmission probability of the WFM method without
computing the rapidly varying evanescent waves or attaching
the extra layers to the transition region is comparable to that
obtained by the nonequilibrium Green’s function method.

We also carried out electron transport calculations on two-
dimensional graphene sheets with either zigzag- or armchair-
shaped B-N line defects and discussed about the indirect
influence of the defect states on the electron transport prop-
erties. The transport calculations revealed that the graphene
sheet with the zigzag-shaped B-N line defect has an electron
transmission dependent on transverse momentum perpendicu-
lar to the direction of electron transport. On the other hand,
the electron transmission of the graphene sheet with the
armchair-shaped B-N line defect exhibits less dependency
on the transverse momentum, though the transmission value
is reduced in comparison to that of ideal electron transport
without any defects. The electron-transmission dependency on
transverse momentum can be explained from the electronic
band structures of the transition regions calculated under
periodic boundary conditions. More specifically, the original
band structure of a pristine graphene sheet is largely deformed
by hybridization with localized states originating from the
zigzag-shaped B-N line defect. Because the localized states are
at the transverse momentum kx = 0.5, the incident electrons
with transverse momenta close to kx = 0.5 are significantly
affected and the transmission value becomes small. In the case
of the armchair-shaped B-N line defect, the band structure
is not significantly deformed, because there are no localized
states originating from the B-N line defect at the transverse
momentum and energy close to the Dirac points. The present
study on the graphene sheets using the proposed method can
be extended to the study on the electron transport properties
of carbon nanotubes with B-N defects, which recently attracts
attention [52–54].
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APPENDIX A: ALTERNATIVE APPROACH TO COMPUTE

GENERALIZED BLOCH WAVES OF ELECTRODES

The alternative approach for computation of generalized
Bloch waves is to use the Green’s function of the isolated
Hamiltonian of the electrode �L[≡(HL)−1] proposed by
Fujimoto and Hirose [11]. In this scheme, one assumes that
mL > 2mLL. If mL < 2mLL, several unit cells of the crystal
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are included in HL to satisfy mL > 2mLL. The generalized
Bloch waves are obtained by solving the following generalized
eigenvalue problem

(
−θL(ξ3,ξ1)h

L† −θL(ξ3,ξ3)h
L

0 I

)(
φ(i−1)(ξ3)
φ(i+1)(ξ1)

)

= λ

(
I 0

−θL(ξ1,ξ1)h
L† −θL(ξ1,ξ3)h

L

)(
φ(i−1)(ξ3)
φ(i+1)(ξ1)

)
,

(A1)

where

�L ≡ (HL)−1 =




θL(ξ1,ξ1) θL(ξ1,ξ2) θL(ξ1,ξ3)
θL(ξ2,ξ1) θL(ξ2,ξ2) θL(ξ2,ξ3)
θL(ξ3,ξ1) θL(ξ3,ξ2) θL(ξ3,ξ3)


.

(A2)

Here, multiple grids or bases are bunched together in ξi . ξ1

(ξ3) includes mLL grids or bases having interactions with the
left (right) neighboring unit cell {χ1,j } ({χ3,j }) and ξ2 gathers
mL − 2mLL grids or bases not having the interaction with the
neighboring cells {χ2,j }. For example,

ξ1 =
(
χ1,1, . . . ,χ1,mLL

)
. (A3)

Thus, θL(ξ1,ξ1) is an mLL × mLL matrix expressed as
θL(ξ1,ξ1) = 〈ξ1|�L|ξ1〉. The computational cost of this
scheme is O(m2

LmLL) to set up Eq. (A1), when HL is sparse and
an iterative method is used. Although this scheme computes

the eigenpairs of Eq. (A1) within the specific interval of
λmin < |λ| < 1/λmin, truly semi-infinite systems can be treated
by solving the continued-fraction equations introduced in
Sec. II E.

APPENDIX B: WAVE FUNCTION MATCHING FORMULA

Let us introduce the WFM formula [11] for the case that
the rank of HL(HR), mL(mR), and the rank of HL,L(HR,R),
mLL(mRR), are equal. The case that they are not equal is
formulated in Appendix C. The Kohn-Sham equation for the
computational model with l extra layers [Fig. 1(b)] is expressed
as

(EŜ(l) − Ĥ(l))




ψ
(l)
1
...
...
...

ψ (l)
n




=




−H
†

L,Lψ0

0
...
0

−HR,Rψn+1




. (B1)

Multiplying the Green’s function Ĝ(l)[= (EŜ(l) − Ĥ(l))−1]
from the left hand side yields




ψ
(l)
1
...
...
...

ψ (l)
n




= Ĝ(l)




−H
†

L,Lψ0

0
...
0

−HR,Rψn+1




, (B2)

where

Ĝ(l) =




G
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1−l,1−l . . . G
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1−l,1 . . . G
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1−l,n G
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1−l,n+1 . . . G
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. . .
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...
G

(l)
0,1−l . . . G

(l)
0,0 G

(l)
0,1 . . . G

(l)
0,n G

(l)
0,n+1 . . . G

(l)
0,n+l

G
(l)
1,1−l . . . G

(l)
1,0 G

(l)
1,1 . . . G

(l)
1,n G

(l)
1,n+1 . . . G

(l)
1,n+l

...
...

...
. . .

...
...

...
G

(l)
n,1−l . . . G

(l)
n,0 G

(l)
n,1 . . . G(l)

n,n G
(l)
n,n+1 . . . G

(l)
n,n+l

G
(l)
n+1,1−l . . . G

(l)
n+1,0 G

(l)
n+1,1 . . . G

(l)
n+1,n G

(l)
n+1,n+1 . . . G

(l)
n+1,n+l

...
...

...
...

...
. . .

...
G

(l)
n+l,1−l . . . G

(l)
n+l,0 G

(l)
n+l,1 . . . G

(l)
n+l,n G

(l)
n+l,n+1 . . . G

(l)
n+l,n+l




(B3)

with G
(l)
i,j being the (i,j )th block-matrix element of the Green’s function of the isolated transition region Ĝ(l). From the first and

last block rows of Eq. (B2), ψ0 and ψn+1 are related to ψ
(l)
1 and ψ (l)

n as follows:

ψ
(l)
1 = −G

(l)
1−l,1−lH

†

L,Lψ0 − G
(l)
1−l,n+lHR,Rψn+1, (B4)

ψ (l)
n = −G

(l)
n+l,1−lH

†

L,Lψ0 − G
(l)
n+l,n+lHR,Rψn+1. (B5)

Substituting the relation of Eq. (8) into Eqs. (B4) and (B5), we obtain

ψ
ref,(l)
1 + ψ

in,(l)
1 = −G

(l)
1−l,1−lH

†

L,L

(
ψ ref

0 + ψ in
0

)
− G

(l)
1−l,n+lHR,Rψn+1, (B6)

ψ (l)
n = −G

(l)
n+l,1−lH

†

L,L

(
ψ ref

0 + ψ in
0

)
− G

(l)
n+l,n+lHR,Rψn+1. (B7)
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Rewriting Eqs. (B6) and (B7) in terms of the SWFs in the electrode regions ψ ref
0 and ψn+1, we arrive at the following WFM

formula,


−G

(l)
1−l,1−lH

†

L,L − ψ
ref,(l)
1

(
ψ ref

0

)−1 −G
(l)
1−l,n+lHR,R

−G
(l)
n+l,1−lH

†

L,L −G
(l)
n+l,n+lHR,R − ψ (l)

n (ψn+1)−1




(
ψ ref

0

ψn+1

)
=


G

(l)
1−l,1−lH

†

L,Lψ in
0 + ψ

in,(l)
1

G
(l)
n+l,1−lH

†

L,Lψ in
0


. (B8)

Here, ψ in
0 is determined by Eq. (23) and ψ

in,(l)
1 = λ+

L,kψ
in
0 . In Eq. (B8), the left (right) matching plane is set between ψ ref

0 and

ψ
ref,(l)
1 (ψ (l)

n and ψn+1).
To solve the simultaneous equations of Eq. (B8), we need the ratios of the SWFs between the neighboring layers on both sides of

the matching planes ψ
ref,(l)
1 (ψ ref

0 )−1 and ψ (l)
n (ψn+1)−1. From the boundary conditions in the electrode regions, i.e., Eqs. (22)–(25),

the ratios in the right and left electrode regions are given by

ψn+1(ψn+2)−1 = �̃
+
R (�̃

+
R�̃

+
R )−1, (B9)

and

ψ ref
0

(
ψ ref

−1

)−1 = �̃
−
L (�̃

−
L (�̃

−
L )−1)−1, (B10)

respectively. Here, �̃
+
R and �̃

−
L contain only the propagating and slowly varying evanescent waves. Thus, (�̃

+
R�̃

+
R )−1 and

(�̃
−
L (�̃

−
L )−1)−1 are determined by the pseudoinverses. In the left electrode region, the SWF satisfies

H
†

L,Lψ ref
−1 + HLψ ref

0 + HL,Lψ
ref,(l)
1 = 0. (B11)

Accordingly, we can see that the ratio of the SWFs at the left matching plane ψ
ref,(l)
1 (ψ ref

0 )−1 can be derived as

ψ
ref,(l)
1

(
ψ ref

0

)−1 = −(HL,L)−1
(
HL + H

†

L,Lψ ref
−1

(
ψ ref

0

)−1)
. (B12)

In a similar way, the ratio at the right matching plane can be constructed as

ψ (l)
n (ψn+1)−1 = −(H

†

R,R)−1(HR + HR,Rψn+2(ψn+1)−1). (B13)

Note that once the recursive equations Eqs. (B12) and (B13) are solved, ψ
ref,(l)
1 (ψ ref

0 )−1 and ψ (l)
n (ψn+1)−1 contain part of the

contribution of the rapidly varying evanescent wave excluded by the cutoff parameter λmin. Inserting Eqs. (B12) and (B13) into
Eq. (B8) and solving the simultaneous equation Eq. (B8), we obtain the SWFs at the first layers of the left and right electrode
regions ψ ref

0 and ψn+1.
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Here, we define the mLL × mLL ratio matrices [11] as

Rref,(l+1) = ψ ref
−1

(
ψ ref

0

)−1
, (B14)

Rref,(l) = ψ ref
0

(
ψ

ref,(l)
1

)−1
, (B15)

and the mRR × mRR ratio matrices as

Rtra,(l+2) = ψn+2(ψn+1)−1, (B16)

Rtra,(l+1) = ψn+1

(
ψ (l)

n

)−1
. (B17)

By substituting Eqs. (B14) and (B15) [Eqs. (B16) and (B17)] into Eq. (B12) [Eq. (B13)] and shifting the indices of ratio matrices
by one unit cell, Eqs. (B12) and (B13) can be rewritten in the form of continued fractions [11],

Rref,(l−1) = −(HL + H
†

L,LRref,(l))−1HL,L, (B18)

Rtra,(l) = −(HR + HR,RRtra,(l+1))−1H
†

R,R. (B19)

Accordingly, the WFM formula Eq. (B8) becomes


−G

(l)
1−l,1−lH

†

L,L − (Rref,(l))−1 −G
(l)
1−l,n+lHR,R

−G
(l)
n+l,1−lH

†

L,L −G
(l)
n+l,n+lHR,R − (Rtra,(l+1))−1




(
ψ ref

0

ψn+1

)
=


G

(l)
1−l,1−lH

†

L,Lψ in
0 + ψ

in,(l)
1

G
(l)
n+l,1−lH

†

L,Lψ in
0


. (B20)

The SWFs in the transition region are obtained by substituting the obtained ψ ref
0 and ψn+1 into Eq. (B2). Note that only parts

of the block-matrix elements of the Green’s functions matrix G
(l)
i,1−l and G

(l)
i,n+l (i = 1 − l, . . . ,n + l) are needed to obtain the

SWFs.

APPENDIX C: WAVE FUNCTION MATCHING FOR GENERAL CASE

In Appendix B, we introduced the WFM formula [11] for the case that the ranks of HL(HR) and HL,L(HR,R) are identical
(mL = mLL and mR = mRR). In many cases, e.g., real-space grid methods, the Hamiltonian does not satisfy such a condition. In
this Appendix, the WFM formula for the case that mL > mLL and mR > mRR will be derived. Although we assume mL > 2mLL,
this condition can be easily satisfied by increasing the number of unit cells in HL, as introduced in Sec. II A. The splitting using
ξ1, ξ2, and ξ3 in Sec. II A allows the SWFs ψ

ref,(l)
1 to be written as

ψ
ref,(l)
1 =




ψ
ref,(l)
1 (ξ1)

ψ
ref,(l)
1 (ξ2)

ψ
ref,(l)
1 (ξ3)


. (C1)

Using the same separation for ψ0, ψ (l)
n , and ψn+1, Eq. (B1) is expressed as

(EŜ(l) − Ĥ(l))




ψ
ref,(l)
1 (ξ1)

ψ
ref,(l)
1 (ξ2)

ψ
ref,(l)
1 (ξ3)

...
ψ (l)

n (ξ1)

ψ (l)
n (ξ2)

ψ (l)
n (ξ3)




=




−h
L†

ψ0(ξ3)
0
...
0

−h
R
ψn+1(ξ1)




. (C2)
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Multiplying Ĝ(l)[=(EŜ(l) − Ĥ(l))−1] from the left hand side leads



ψ
ref,(l)
1 (ξ1)

ψ
ref,(l)
1 (ξ2)

ψ
ref,(l)
1 (ξ3)

...
ψ (l)

n (ξ1)

ψ (l)
n (ξ2)

ψ (l)
n (ξ3)




= Ĝ(l)




−h
L†

ψ0(ξ3)
0
...
0

−h
R
ψn+1(ξ1)




. (C3)

Supposing that (i,j ) block-matrix element of Green’s function G
(l)
i,j in Eq. (B3) is given by

G
(l)
i,j =




G
(l)
i,j (ξ1,ξ1) G

(l)
i,j (ξ1,ξ2) G

(l)
i,j (ξ1,ξ3)

G
(l)
i,j (ξ2,ξ1) G

(l)
i,j (ξ2,ξ2) G

(l)
i,j (ξ2,ξ3)

G
(l)
i,j (ξ3,ξ1) G

(l)
i,j (ξ3,ξ2) G

(l)
i,j (ξ3,ξ3)


, (C4)

we have the WFM formula,
(

−G
(l)
1−l,1−l(ξ1,ξ1)h

L† − ψ
ref,(l)
1 (ξ1)

(
ψ ref

0 (ξ3)
)−1 −G

(l)
1−l,n+l(ξ1,ξ3)h

R

−G
(l)
n+l,1−l(ξ3,ξ1)h

L† −G
(l)
n+l,n+l(ξ3,ξ3)h

R − ψ (l)
n (ξ3)(ψn+1(ξ1))−1

)

×
(

ψ ref
0 (ξ3)

ψn+1(ξ1)

)
=

(
G

(l)
1−l,1−l(ξ1,ξ1)h

L†
ψ in

0 (ξ3) + ψ
in,(l)
1 (ξ1)

G
(l)
n+l,1−l(ξ3,ξ1)h

L†
ψ in

0 (ξ3)

)
. (C5)

Applying the same separation using ξ1, ξ2, and ξ3 to �̃
+
R and �̃

−
L , Eqs. (B9) and (B10) take the forms of

ψn+1(ξ3)(ψn+2(ξ1))−1 = �̃
+
R (ξ3)(�̃

+
R�̃

+
R (ξ1))−1, (C6)

ψ ref
0 (ξ1)

(
ψ ref

−1(ξ3)
)−1 = �̃

−
L (ξ1)((�̃

−
L )−1

�̃
−
L (ξ3))−1, (C7)

respectively. Since the rapidly decreasing evanescent waves are not included in �̃
+
R�̃

+
R (ξ1) and (�̃

−
L )−1

�̃
−
L (ξ3), (�̃

+
R�̃

+
R (ξ1))

−1
and

((�̃
−
L )−1

�̃
−
L (ξ3))

−1
are computed by the pseudoinverses. The ratio of the SWFs in Eq. (C5) is an mLL × mLL (mRR × mRR) matrix,

while that in Eq. (B7) is an mL × mL (mR × mR) matrix. It is not possible to solve Eqs. (B12) and (B13) using ψ ref
0 (ξ1)(ψ ref

−1(ξ3))−1

and ψn+1(ξ3)(ψn+2(ξ1))−1 strictly because mL > mLL and mR > mRR . We derive other continued-fraction equations for the ratio
of SWFs. ψ

ref,(l)
1 obeys the equation,




ψ ref
0 (ξ1)

ψ ref
0 (ξ2)

ψ ref
0 (ξ3)


 =




θL(ξ1,ξ1) θL(ξ1,ξ2) θL(ξ1,ξ3)

θL(ξ2,ξ1) θL(ξ2,ξ2) θL(ξ2,ξ3)

θL(ξ3,ξ1) θL(ξ3,ξ2) θL(ξ3,ξ3)







−h
L†

ψ ref
−1(ξ3)

0

−h
L
ψ

ref,(l)
1 (ξ1)


, (C8)

where θL(ξi,ξj ) is the (i,j )th block-matrix element of (HL)−1 defined in Eq. (A2). From the first and third block rows of Eq. (C8),
we see that

ψ ref
0 (ξ1) = −θL(ξ1,ξ1)h

L†
ψ ref

−1(ξ3) − θL(ξ1,ξ3)h
L
ψ

ref,(l)
1 (ξ1), (C9)

ψ ref
0 (ξ3) = −θL(ξ3,ξ1)h

L†
ψ ref

−1(ξ3) − θL(ξ3,ξ3)h
L
ψ

ref,(l)
1 (ξ1). (C10)

Multiplying (ψ ref
−1(ξ3))−1 from the right side of Eq. (C9) leads to

ψ ref
0 (ξ1)

(
ψ ref

−1(ξ3)
)−1 = −θL(ξ1,ξ1)h

L† − θL(ξ1,ξ3)h
L
ψ

ref,(l)
1 (ξ1)

(
ψ ref

−1(ξ3)
)−1

. (C11)

Multiplying (ψ ref,(l)
1 (ξ1))−1 from the right side of Eq. (C10), we have

ψ ref
0 (ξ3)

(
ψ

ref,(l)
1 (ξ1)

)−1 = −θL(ξ3,ξ1)h
L†

ψ ref
−1(ξ3)

(
ψ

ref,(l)
1 (ξ1)

)−1 − θL(ξ3,ξ3)h
L
. (C12)

Substituting ψ
ref,(l)
1 (ξ1)(ψ ref

−1(ξ3))−1 in Eq. (C11) into ψ ref
−1(ξ3)(ψ ref,(l)

1 (ξ1))−1 in Eq. (C12), we obtain the continued-fraction
equation for the left electrode side,

ψ ref
0 (ξ3)

(
ψ

ref,(l)
1 (ξ1)

)−1 = −θL(ξ3,ξ3)h
L + θL(ξ3,ξ1)h

L†(
ψ ref

0 (ξ1)
(
ψ ref

−1(ξ3)
)−1 + θL(ξ1,ξ1)h

L†)−1
θL(ξ1,ξ3)h

L
. (C13)
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Analogous to Eq. (C13), the continued-fraction equation for the right electrode side is given by

ψn+1(ξ1)
(
ψ (l)

n (ξ3)
)−1 = −θR(ξ1,ξ1)h

R† + θR(ξ1,ξ3)h
R

(ψn+1(ξ3)(ψn+2(ξ1))−1 + θR(ξ3,ξ3)h
R

)−1
θR(ξ3,ξ1)h

R†
. (C14)

Shifting the matching planes by one extra layer inside of the transition region as discussed in Sec. II E, we obtain the following
WFM formula in which the left (right) matching plane is set between ψ

(l)
1 (ξ3) and ψ

(l−1)
1 (ξ1) [ψ (l)

n (ξ1) and ψ (l−1)
n (ξ3)].


−G

(l−1)
2−l,2−l(ξ1,ξ1)h

L† − ψ
ref,(l−1)
1 (ξ1)

(
ψ

ref,(l)
1 (ξ3)

)−1 −G
(l−1)
2−l,n+l−1(ξ1,ξ3)h

R

−G
(l−1)
n+l−1,2−l(ξ3,ξ1)h

L† −G
(l−1)
n+l−1,n+l−1(ξ3,ξ3)h

R − ψ (l−1)
n (ξ3)

(
ψ (l)

n (ξ1)
)−1




(
ψ

ref,(l)
1 (ξ3)

ψ (l)
n (ξ1)

)

=


G

(l−1)
2−l,2−l(ξ1,ξ1)h

L†
ψ

in,(l)
1 (ξ3) + ψ

in,(l−1)
1 (ξ1)

G
(l−1)
n+l−1,2−l(ξ3,ξ1)h

L†
ψ

in,(l)
1 (ξ3)


. (C15)

By repeatedly solving Eqs. (C13) and (C14) l times, the WFM formula is rewritten as


−G

(0)
1,1(ξ1,ξ1)h

L† − ψ
ref,(0)
1 (ξ1)

(
ψ

ref,(1)
1 (ξ3)

)−1 −G
(0)
1,n(ξ1,ξ3)h

R

−G
(0)
n,1(ξ3,ξ1)h

L† −G(0)
n,n(ξ3,ξ3)h

R − ψ (0)
n (ξ3)

(
ψ (1)

n (ξ1)
)−1




(
ψ

ref,(1)
1 (ξ3)

ψ (1)
n (ξ1)

)

=


G

(0)
1,1(ξ1,ξ1)h

L†
ψ

in,(1)
1 (ξ3) + ψ

in,(0)
1 (ξ1)

G
(0)
n,1(ξ3,ξ1)h

L†
ψ

in,(1)
1 (ξ3)


. (C16)

Defining the mLL × mLL and mRR × mRR ratio matrices for the left and right electrode sides,

Rref,(l−1) = ψ
ref,(l)
1 (ξ3)

(
ψ

ref,(l−1)
1 (ξ1)

)−1
, (C17)

Rtra,(l) = ψ (l)
n (ξ1)

(
ψ (l−1)

n (ξ3)
)−1

, (C18)

respectively, Eqs. (C13), (C14), and (C16) are expressed as

Rref,(l−1) = −θL(ξ3,ξ3)h
L + θL(ξ3,ξ1)h

L†
((Rref,(l))−1 + θL(ξ1,ξ1)h

L†
)−1

θL(ξ1,ξ3)h
L
, (C19)

Rtra,(l) = −θR(ξ1,ξ1)h
R† + θR(ξ1,ξ3)h

R
((Rtra,(l+1))−1 + θR(ξ3,ξ3)h

R
)−1

θR(ξ3,ξ1)h
R†

, (C20)

−G

(0)
1,1(ξ1,ξ1)h

L† − (Rref,(0))−1 −G
(0)
1,n(ξ1,ξ3)h

R

−G
(0)
n,1(ξ3,ξ1)h

L† −G(0)
n,n(ξ3,ξ3)h

R − (Rtra,(1))−1




(
ψ

ref,(1)
1 (ξ3)

ψ (1)
n (ξ1)

)
=


G

(0)
1,1(ξ1,ξ1)h

L†
ψ

in,(1)
1 (ξ3) + ψ

in,(0)
1 (ξ1)

G
(0)
n,1(ξ3,ξ1)h

L†
ψ

in,(1)
1 (ξ3)


.

(C21)

From the discussion in Sec. II E, the ratio matrices are uniquely determined if l is sufficiently large. Inserting ψ
ref,(1)
1 (ξ3) and

ψ (1)
n (ξ1) into Eq. (C3), the SWFs in the transition region are computed.
For the computation of the transmission probability, the matrices containing the group velocities of the incident and transmitted

waves and the vector of the transmission coefficients are given by

vin = a�
+†
L (ξ1)Ŵ(0)

L �
+
L (ξ1), (C22)

v̌tra = a(�̌
+
R )†(ξ1)Ŵ(0)

R �̌
+
R (ξ1), (C23)

ťk = (�̌
+
R (ξ1))−1ψ

(1)
n,k(ξ1), (C24)

respectively. The transmission matrix is obtained by

Tk,k = a
(
vin

k,k

)−1
ψ

(1)†
n,k (ξ1)Ŵ(0)

R ψ
(1)
n,k(ξ1) (C25)

with the dimension of Ŵ
(0)
R being mRR .
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FIG. 11. Convergence behavior of the ratio matrix Rref .

APPENDIX D: CONVERGENCE BEHAVIOR

OF THE RATIO MATRIX

As introduced in Sec. II E, the ratio matrices Rref,(0)

and Rtra,(1) are obtained by solving the continued-fraction
equations Eqs. (27) and (28). The initial matrix of

(�̃
−
L )−1

�̃
−
L (�̃

−
L )−1 [(�̃

+
R )−1

�̃
+
R (�̃

+
R )−1] is constructed at ψ−1

and ψ0 (ψn+1 and ψn+2), in which the rapidly decreasing
evanescent waves vanish. It is of importance that the ratio ma-
trix Rref,(0) (Rtra,(1)) is uniquely determined after the continued-
fraction equation Eq. (27) [Eq. (28)] is solved until Rref,(0)

(Rtra,(1)) on the left- and right-hand sides become identical.
Figure 11 shows the convergence behavior of the ratio matrix
Rref for the (9,0) CNT electrode used in Sec. III A as the
electrode region. Rref

exact are computed by solving Eq. (C19)

10 times using the initial value of (�̃
−
L )−1

�̃
−
L (�̃

−
L )−1 with

λmin = 10−10 as a reference and the difference from Rref
exact are

plotted in Fig. 11. We can see that the number of iterations
for solving the continued-fraction equations is small when
λmin is set to be small and the ratio matrices can be uniquely
determined by the continued-fraction equations.

APPENDIX E: DETERIORATION OF THE

TRANSLATIONAL INVARIANCE OF THE TRANSMISSION

PROBABILITY DUE TO THE PSEUDOINVERSE

The transmission coefficient should not change except the
trivial Bloch factors as long as the same matrices for the group
velocity are used to retain the translational invariance of the
transmission probability. The transmission coefficients at
the first and second extra layers from the boundary between
the right electrode and transition regions, t̃

(l)
n,k and t̃

(l−1)
n,k , should

satisfy the following relation,

t̃
(l)
n,k = �̃

+
R t̃

(l−1)
n,k . (E1)

According to Eqs. (16) and (18), the SWFs at the first and
second extra layers are described as

ψ
(l)
n,k = (�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )−1

ã
+
n+1,k

(�̊
+
R )−1

å
+
n+1,k

)
, (E2)

ψ
(l−1)
n,k = (�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )−2

ã
+
n+1,k

(�̊
+
R )−2

å
+
n+1,k

)
, (E3)

respectively. Note that in the transition region, the evanescent
waves excluded by the cutoff parameter λmin also contribute to

the SWFs. Multiplying the pseudoinverse (�̃
+
R )−1 to Eqs. (E2)

and (E3) from the left hand side leads to

t̃
(l)
n,k = (�̃

+
R )−1(�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )−1

ã
+
n+1,k

(�̊
+
R )−1

å
+
n+1,k

)

= (�̃
+
R )−1

ã
+
n+1,k + (�̃

+
R )−1

�̊
+
R (�̊

+
R )−1

å
+
n+1,k, (E4)

t̃
(l−1)
n,k = (�̃

+
R )−1(�̃

+
R ,�̊

+
R

)

(
(�̃

+
R )−2

ã
+
n+1,k

(�̊
+
R )−2

å
+
n+1,k

)

= (�̃
+
R )−2

ã
+
n+1,k + (�̃

+
R )−1

�̊
+
R (�̊

+
R )−2

å
+
n+1,k. (E5)

Since the generalized Bloch waves are nonorthogonal,

(�̃
+
R )−1

�̊
+
R 
= 0, resulting in t̃

(l)
n,k 
= �̃

+
R̃ t

(l−1)
n,k . When a regular

matrix is used for �̌
+
R , the second terms of Eqs. (E4) and (E5)

vanish and the translational invariance is preserved.

APPENDIX F: INVARIANCE OF THE TRANSMISSION

MATRIX WITH RESPECT TO THE TRANSMITTED WAVES

We prove Eq. (53) indicating that the transmission matrix

is invariant as long as a regular matrix is taken for �̌
+
R . Let

the number of columns of �̃
+
R (�̊

+
R ) be m̃R (m̊R). Defining a

mR × mR regular matrix

P =
(

I p1

0 p2

)
(F1)

with p1 and p2 being m̃R × m̊R and m̊R × m̊R matrices,

respectively, �
+
R and �̌

+
R are related as

�
+
R = �̌

+
RP. (F2)

From Eq. (F1), one sees that �̌
+
R can include the components

of �̃
+
R . Equation (51) is rewritten as

ťk = (�̌
+
R )−1ψ

(1)
n,k

= P(�+
R )−1ψ

(1)
n,k

= Ptk. (F3)

Then, we have

ť = Pt. (F4)

The group velocity of the transmitted wave is expressed as

v̌tra = a(�̌
+
R )†Ŵ(0)

R �̌
+
R

= a(�+
RP−1)†Ŵ(0)

R �
+
RP−1

= (P−1)†vtraP−1. (F5)
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Substituting Eqs. (F2) and (F3) into Eq. (40) leads to

T =
(
vin

)−1
ť†v̌tra ť

= (vin)−1(Pt)†(P−1)†vtraP−1Pt

= (vin)−1t†vtrat. (F6)

APPENDIX G: WAVE-FUNCTION-MATCHING FORMULA

WITHOUT GREEN’S FUNCTION

Computation of the Green’s function of the isolated tran-
sition region Ĝ(l) is time consuming in some cases. In this
Appendix, we introduce an alternative procedure which solves
simultaneous equations for the SWFs [55]. The SWFs in the
electrode regions are rewritten as

ψ0 = ψ ref
0 + ψ in

0

= ψ ref
0

(
ψ

ref,(l)
1

)−1
ψ

ref,(l)
1 + ψ in

0

= Rref,(l)
(
ψ

(l)
1 − ψ

in,(l)
1

)
+ ψ in

0 , (G1)

ψn+1 = ψn+1

(
ψ (l)

n

)−1
ψ (l)

n

= Rtra,(l)ψ (l)
n . (G2)

Inserting Eqs. (45), (46), (G1), and (G2) into Eq. (B2)
yields [55]

(EŜ(l) − Ĥ(l) − H̃(l))




ψ
(l)
1
...
...
...

ψ (l)
n




=




−H
†

L,Lψ in
0 − �

(l)
L ψ

in,(l)
1

0
...
0
0




, (G3)

where H̃(l) is a zero matrix except that the upper left mLL ×
mLL and lower right mRR × mRR block-matrix elements are
�

(l)
L and �

(l)
R , respectively:

H̃(l) =




�
(l)
L 0 . . . . . . 0

0 0
...

...
. . .

...
... 0 0
0 . . . . . . 0 �

(l)
R




. (G4)

The SWFs can be evaluated without computing the Green’s
functions of the isolated transition region Ĝ(l) if one solves
Eq. (G3). Inserting ψ

(l)
1 and ψ (l)

n into Eqs. (G1) and (G2),
one has the SWFs at the first layers of the electrode regions
ψ ref

0 (= ψ0 − ψ in
0 ) and ψn+1, which are used to compute the

transmission and reflection coefficients.

When the matching planes are moved, Eq. (G3) is rewritten
as

(EŜ(0) − Ĥ(0) − H̃(0))




ψ
(0)
1
...
...
...

ψ (0)
n




=




−H
†

L,Lψ
in,(1)
1 − �

(0)
L ψ

in,(0)
1

0
...
0
0




, (G5)

where

H̃(0) =




�
(0)
L 0 . . . . . . 0

0 0
...

...
. . .

...
... 0 0
0 . . . . . . 0 �

(0)
R




. (G6)

In the case that mL > mLL and mR > mRR , the self-energy
terms are defined by

�
(l)
L = −h

L†
Rref,(l), (G7)

�
(l)
R = −h

R
Rtra,(l+1). (G8)

Then, the similar equation with Eq. (G5) becomes

(EŜ(0) − Ĥ(0) − H̃(0))




ψ
(0)
1 (ξ1)

...

...

...
ψ (0)

n (ξ3)




=




−h
L†

ψ
in,(1)
1 (ξ3) − �

(0)
L ψ

in,(0)
1 (ξ1)

0
...
0
0




, (G9)

where

H̃(0) =




�
(0)
L 0 . . . . . . 0

0 0
...

...
. . .

...
... 0 0
0 . . . . . . 0 �

(0)
R




. (G10)

Here �
(0)
L and �

(0)
R are mLL × mLL and mRR × mRR block

matrices.
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