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Chapter 3 Actual evapotranspiration and precipitation 

measured by lysimeters: a comparison with 

eddy covariance and tipping bucket 

 

*adapted from Gebler, S., Hendricks Franssen, H.J., Pütz, T., Post, H., Schmidt, M., Vereecken, H., 2015. 

Actual evapotranspiration and precipitation measured by lysimeters: A comparison with 

eddy covariance and tipping bucket. Hydrology and Earth System Sciences, 19: 2145-

2161. 

3.1 Introduction 

Precise estimates of precipitation and actual evapotranspiration are important for an improved 

understanding of water and energy exchange processes between land and atmosphere relevant for 

many scientific disciplines and agricultural management. Information about measurement errors 

and uncertainties is essential for improving measurement methods and correction techniques as 

well as for dealing with uncertainty during calibration and validation of model simulations. 

Although first devices for modern scientific purposes were developed in Europe during the 17th 

century (Kohnke et al., 1940; Strangeways, 2010), the accurate estimation of precipitation ( ) and 

actual evapotranspiration (ETa) is still a challenge. Common precipitation measurement methods 

exhibit systematic and random errors depending on the device locations and climatic conditions. 

Legates and DeLiberty (1993) concluded from their long-term study of precipitation biases in the 

United States that Hellmann type gauges (US standard) undercatch precipitation amounts. 

Undercatch is larger in case of snowfall and larger wind speeds. Wind-induced loss is seen as the 

main source of error (Sevruk, 1981, 1996; Yang et al., 1998; Chvíla et al., 2005; Brutsaert, 2010). 

Precipitation gauges are commonly installed above ground to avoid negative impact on the 

measurements by splash water, hail, and snow drift. However, this common gauge setup causes 

wind distortion and promotes the development of eddies around the device. Wind tunnel 

losses of 2 10% for rain and 20 50% for snow compared to the preset precipitation amount. In 

general, wind induced loss increases with installation height of the device and wind speed, and it 

decreases with precipitation intensity (Sevruk, 1989). Intercomparison studies between different 

rain gauge designs of the World Meteorological Organization (WMO) have indicated that shielded 

devices can considerably reduce this undercatch compared to unshielded gauges, in particular for 

snow and mixed precipitation (Goodison et al., 1997). Further precipitation losses that affect the 

rain gauge measurement are evaporation of water from the gauge surface and recording 
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mechanisms (Sevruk, 1981; Michelson, 2004). Moreover, measurement methods (e.g., 

condensation plates, optical methods) to estimate the contribution of rime, dew, and fog to the total 

precipitation exhibit a high uncertainty (Jacobs et al., 2006). A short-term lysimeter case study by 

Meissner et al. (2007) and a long-term investigation with a surface energy budget model calibrated 

with microlysimeters by Jacobs et al. (2006) show that rime, fog, and dew contribute up to 5% of 

the annual precipitation at a humid grassland site and are usually not captured by a standard 

precipitation gauge. 

The eddy covariance (EC) method is one of the most established techniques to determine the 

exchange of water, energy, and trace gases between the land surface and the atmosphere. On the 

basis of the covariance between vertical wind speed and water vapor density, the EC method 

calculates the vertical moisture flux (and therefore ET) in high spatial and temporal resolution with 

relatively low operational costs. The size and shape of the measurement area (EC footprint) vary 

strongly with time (Finnigan, 2004). Under conditions of limited mechanical and thermal 

turbulence the EC method tends to underestimate fluxes (Wilson et al., 2001; Li et al., 2008). 

Energy balance deficits are on average found to be between 20 and 25% (Wilson et al., 2001; 

Hendricks Franssen et al., 2010), and therefore latent heat flux or actual evapotranspiration 

estimated from EC data shows potentially a strong underestimation. The energy balance closure 

problem can be corrected by closure procedures using the Bowen ratio. However, this is 

controversially discussed, especially because not only the underestimation of the land surface 

fluxes but also other factors like the underestimation of energy storage in the canopy might play a 

role (Twine et al., 2000; Foken et al., 2011). 

As an alternative to classical rain gauges and the eddy covariance method, state-of-the-art, high-

precision weighing lysimeters are able to capture the fluxes at the interface of soil, vegetation, and 

atmosphere (Unold and Fank, 2008). A high weighing accuracy and a controlled lower boundary 

condition permit high-temporal-resolution precipitation measurements at ground level, including 

dew, fog, rime, and snow. Additionally, ETa can be estimated with the help of the lysimeter water 

balance. However, the high acquisition and operational costs are a disadvantage of lysimeters. 

Moreover, the accuracy of lysimeter measurements is affected by several error sources. Differences 

in the thermal, wind, and radiation regime between a lysimeter device and its surroundings (oasis 

effect) (Zenker, 2003) as well as lysimeter management (e.g., inaccuracies in biomass 

determination) can affect the measurements. Wind or animal-induced mechanical vibrations can 

influence the weighing system but can be handled by accurate data processing using filtering and 

smoothing algorithms (Schrader et al., 2013; Peters et al., 2014). Vaughan and Ayars (2009) 

examined lysimeter measurement noise for data at a temporal resolution of 1 min, caused by wind 

loading. They presented noise reduction techniques that rely on Savitzky Golay (Savitzky and 

Golay, 1964) smoothing. Schrader et al. (2013) evaluated the different filter and smoothing 
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strategies for lysimeter data processing on the basis of synthetic and real measurement data. They 

pointed out that the adequate filter method for lysimeter measurements is still a challenge, 

especially at high temporal resolution, due the fact that noise of lysimeter measurements varies 

strongly with weather conditions and mass balance dynamics. Peters et al. (2014) recently 

introduced a filter algorithm for high-precision lysimeters, which combines a variable smoothing 

time window with a noise-dependent threshold filter that accounts for the factors mentioned above. 

They showed that their Adaptive Window and Adaptive Threshold (AWAT) filter improves actual 

evapotranspiration and precipitation estimates from noisy lysimeter measurements compared to 

smoothing methods for lysimeter data using the Savitzky Golay filter or simple moving averages 

used in other lysimeter studies (e.g., Vaughan and Ayars, 2009; Huang et al., 2012; Nolz et al., 

2013; Schrader et al., 2013). 

In this work, a long-term investigation to precipitation estimation with a lysimeter is presented. 

One of the focal points in the study is the contribution of dew and rime to the total precipitation 

amount. The novelty compared to the work by Meissner et al. (2007) is the length of the study and 

the fact that a series of six lysimeters is used. Our work allows corroborating results from Jacobs et 

al. (2006), who used in their long-term study a different, more uncertain measurement method. 

In the literature we find several comparisons between lysimeter measurements and standard ET 

calculations. López-Urrea et al. (2006) found a good agreement of FAO-56 Penman-Monteith with 

lysimeter data on an hourly basis. Vaughan et al. (2007) also reported a good accordance of hourly 

lysimeter measurements with a Penman-Monteith approach of the California Irrigation 

Management Information System. Wegehenkel and Gerke (2013) compared lysimeter ET with 

reference ET and ET estimated by a numerical plant growth model. They found that lysimeter ET 

overestimated actual ET, the cause being an oasis effect. On the other hand, also ET estimated by 

EC measurements and water budget calculations are compared in the literature. Scott (2010) found 

that the EC method underestimated evapotranspiration for a grassland site related to the energy 

balance deficit. However, only a few comparisons between ET estimated by EC and lysimeter data 

were found in the literature. Chávez et al. (2009) evaluated actual evapotranspiration determined by 

lysimeters and EC in the growing season for a cotton field site. They found a good agreement of 

both methods after correcting the energy balance deficit, and they suggested considering also the 

footprint area for EC calculations. Ding et al. (2010) found a lack of energy balance closure and 

underestimation of  by the EC method for maize fields. An energy balance closure based on the 

Bowen ratio method was able to reduce the ET underestimation. Alfieri et al. (2012) provided two 

possible explanations for a strong underestimation of ETa-EC compared to lysimeter ETa: first, the 

energy balance deficit of the EC data, especially for those cases where EC measurements are 

affected by strong advection; second, deviations between the vegetation status of the lysimeter and 

the surrounding field. Evett et al. (2012) found an 18% underestimation of corrected ETa-EC 
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compared to ETa estimated by lysimeter and attributed the difference to differences in vegetation 

growth. Whereas the aforementioned studies conclude that deviations between ETa measurements 

are related to vegetation differences, the EC footprint, and the ability to close the energy balance 

gap, the uncertainties of lysimeter measurements in this context have hardly been investigated. 

Lysimeter ETa estimations often rely on relatively low temporal resolution due to challenges in 

noise reduction, which impedes a simultaneous estimation of both  and ETa by lysimeters. 

Furthermore, studies with cost- and maintenance-intensive lysimeters are either with a few or 

without redundant devices, so that measurement uncertainty cannot be addressed well. 

The Terrestrial Environmental Observatories (TERENO) offer the possibility of detailed long-term 

investigations of the water cycle components at a high spatiotemporal resolution (Zacharias et al., 

2011). This study compares precipitation and evapotranspiration estimates calculated with a set of 

six weighing lysimeters (LYS) with nearby eddy covariance and precipitation measurements for the 

TERENO grassland site Rollesbroich. Additional soil moisture, soil temperature, and 

meteorological measurements at this TERENO test site enable a detailed analysis of differences 

between the different measurement techniques. The lysimeter data (ETa-LYS) are processed with 

the AWAT filter (Peters et al., 2014), which allows a simultaneous estimation of P and ETa at a 

high temporal resolution, and the comparison is carried out with energy-balance-corrected EC data 

(ETa-EC). Actual ET estimates are additionally compared to the full-form Penman-Monteith 

equation (Allen et al., 1998) accounting for the effects of variable grass cover height. Precipitation 

measurements by a classical Hellmann type tipping bucket (TB), with and without accounting for 

wind- and evaporation-induced loss (Richter correction), were compared with lysimeter data for 

1 year (2012). 

For our study, we (1) compared precipitation measurements by lysimeters and a (unshielded) 

standard tipping bucket device and interpreted the differences (for example, the vegetated high-

precision lysimeters potentially allow for better estimates of precipitation, accounting for dew, 

rime, and fog); (2) compared eddy covariance and lysimeter ET estimates and tried to explain 

differences in estimated values; (3) tested whether a correction of the energy balance deficit for the 

EC method results in an ETa estimate which is close to the lysimeter method; and (4) analyzed the 

variability of the measurements by the six lysimeters under typical field conditions with identical 

configuration and management. 
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3.2 Material and Methods 

 Study Site and Measurement Setup 3.2.1

A detailed description of the study site characteristics with an overview of the on-site measurement 

devices is given in chapter 2.1. The following paragraphs provide more detailed information about 

the setup of lysimeter, eddy covariance and precipitation devices used in this study. 

In 2010 a set of six lysimeters (TERENO-SoilCan project, UMS GmbH, Munich, Germany) was 

arranged in a hexagonal design around the centrally placed service unit, which hosts the 

measurement equipment and data recording devices. Each lysimeter contains silty-clay soil profiles 

from the Rollesbroich site and is covered with grass. The conditions at the lysimeters therefore 

closely resemble the ones in the direct surroundings (Figure 3.1). Additionally, the spatial gap 

between lysimeter and surrounding soil was minimized to prevent thermal regimes which differ 

between the lysimeter and the surrounding field (oasis effect). Every lysimeter device has a surface 

of 1 m
2
 and a depth of 1.5 m, and is equipped with a 50 L weighted leachate tank connected via a 

bidirectional pump to a suction rake in the bottom of each lysimeter. To reproduce the field soil 

water regime, the lower boundary conditions are controlled by tensiometers (TS1, UMS GmbH, 

Munich, Germany) monitoring the soil matric potential inside the lysimeter bottom and the 

surrounding field. Matric potential differences between field and lysimeter are compensated by 

suction rakes (SIC 40, UMS GmbH, Munich, Germany) injecting leachate tank water into the 

lysimeter monolith during capillary rise or removing water during drainage conditions.  

 

 

Figure 3.1: The lysimeter set-up of the Rollesbroich study site (November 2012). 
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The weighing precision is 100 g for the soil monolith and 10 g for the leachate tank, accounting for 

long-term temperature variations and load alternation hysteresis effects. For short-term signal 

processing the relative accuracy for accumulated mass changes of soil monolith and leachate is 

10 g. 

For the year 2012 measurements were made every 5 s and averaged to get minute values. In the 

winter season a connection between the snow lying on the lysimeter and the surrounding snow 

layer potentially disturbs the weighing system. A mechanical vibration plate is engaged at all 

lysimeter devices to prevent this situation and is activated once every 5 s between two 

measurements. The lysimeters are also equipped with soil moisture, matric potential, and 

temperature sensors at different depths (10, 30, 50, and 140 cm). Amongst others, soil temperature 

is determined at 10, 30, and 50 cm depth with PT-100 sensors integrated in TS1 tensiometers 

(UMS GmbH, Munich, Germany). A schematic overview of the lysimeter device (Figure 3.2) 

shows the installation locations and the different sensor types. The lysimeter site was kept under 

video surveillance by a camera taking a photo of the lysimeter status every hour. Further technical 

specifications can be found in Unold and Fank (2008). 

 

 

Figure 3.2: Schematic drawing of the lysimeter soil monolith (left) and service well (right) used in 

the TERENO-SoilCan project. The illustration of the lysimeter (left) shows the weighted soil 

column container with slots for soil moisture (TDR), temperature (SIS, TS1), matric potential 

sensors (SIS), soil water sampler (SIC20) and silicon porous suction cup rake (SIC40) installation 

inside and outside the monolith. The service well contains the weighted drainage tank and sampling 

tubes for each affiliated lysimeter (courtesy of UMS GmbH Munich, 2014, used by permission). 
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Latent and sensible heat fluxes were measured by an eddy covariance station at a distance of 

approximately 30 m from the lysimeters. The EC station (50° 37' 19" N, 6° 18' 15" E, 514 m a.s.l.) 

is equipped with a sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, USA) at 2.6m 

height to measure wind components. The open-path device of the gas analyzer (LI7500, LI-COR 

Inc., Lincoln, NE, USA) is mounted along with the anemometer at 2.6m above the ground surface 

and measures H2O content of the air. Air pressure is measured at the processing unit of the gas 

analyzer at a height of 0.57 m. Air humidity and temperature were measured by HMP45C (Vaisala 

Inc., Helsinki, Finland) at 2.58m above the ground surface. Radiation was determined by a four-

component net radiometer (NR01, Hukseflux Thermal Sensors, Delft, Netherlands). Soil heat flux 

was determined at 0.08m depth by a pair of two HFP01 (Hukseflux Thermal Sensors, Delft, 

Netherlands). Precipitation measurements are made by a standard Hellmann type TB balance rain 

gauge (ecoTech GmbH, Bonn, Germany) with a resolution of 0.1mm and a measurement interval 

of 10 min. The measurement altitude of 1m above ground is in accordance with recommendations 

of the German Weather Service (DWD, 1993) for areas with an elevation >500 m a.s.l. and 

occasional heavy snowfall (WMO standard is 0.5 m). The unshielded gauge was temporarily 

heated during wintertime to avoid freezing of the instrument. Additional soil moisture and soil 

temperature measurements were carried out with a wireless sensor network (SoilNet) installed at 

the study site (Qu et al., 2013). The 179 sensor locations at the Rollesbroich site contain six 

SPADE sensors (model 3.04, sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) with two 

redundant sensors at 5, 20, and 50 cm depth. Further technical details can be found in Qu et al. 

(2013). Soil water content and temperature were also measured by two sensor devices installed 

near the lysimeter site. 

 Data Processing 3.2.2

The lysimeter weighing data were processed in three steps: 

1. elimination of outliers by an automated threshold filter; 

2. smoothing of measurement signal with the AWAT filter routine on the basis of data at a 

temporal resolution of 1 min; 

3. estimation of hourly precipitation and evapotranspiration on the basis of the smoothed 

signal. 

Outliers were removed from the data by limiting the maximum weight difference between two 

succeeding measurements for the soil column to 5 kg and for the leachate weight to 0.1 kg. The 

lysimeter readings are affected by large random fluctuations caused by wind and other factors that 

influence the measurement. Therefore, the AWAT filter (Peters et al., 2014) in a second correction 

step was applied on the minute-wise summed leachate and on the weights for each individual 
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lysimeter. First, the AWAT routine gathers information about signal strength and data noise by 

fitting a polynomial to each data point within an interval of 31 min. The optimal order ( ) of the 

polynomial is determined by testing different polynomial orders for the given interval (i.e., : 1 6) 

and selecting the optimal   criterion (Akaike, 1974; Hurvich 

and Tsai, 1989). The maximum order of k is limited to 6 for the AWAT filter, preventing an 

erroneous fit caused by outliers. The average residual  of measured and predicted values 

(Eq. 3.1) and the standard deviation of measured values  (Eq. 3.2) lead to the quotient  

(Eq. 3.3), which gives information about the explained variance of the fit and is related to the 

coefficient of determination ( ).  

  (3.1) 

 

 (3.2) 

 (3.3) 

where  [M] is the measured data,  [M] the fitted value at each time interval ,  [M] the mean 

of the measurements and  the number of measurements within the given interval of data point . 

 indicates that the polynomial totally reproduces the range of data variation in contrast to 

 where nothing of the variation in the data is explained by the fitted polynomial. 

Second, AWAT smoothes the data using a moving average for an adaptive window width  [T], 

which is a time dependent linear function of  (Eq. 3.4): 

  (3.4) 

where  [T] and  [T] are maximum and minimum provided window width. For our study 

 was set to 11 min,   was 61 min. A low  requires less smoothing and therefore small 

time windows, whereas a  close to one requires a smoothing interval close to the allowed . 

Third, AWAT applies an adaptive threshold  (Eq. 3.5) to the data at each time step to distinguish 

between noise and signal related to the dynamics of mechanical disturbances: 

 for  (3.5) 

where  [M] is a function of the interval residuals ( ) [M] (see Eq. 3.1) and the Student  value 

( ) for the 95 % confidence level at each time step,  [M] is the minimum and  [M] is 

the maximum provided threshold for the mass change. The product of Student  and is a 
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measure for the significance level of mass changes during flux calculation. Hence, the  value 

indicates the range ( , where the interval data points differ not significantly from 

the fitted polynomial at the 95 % confidence level. Mass changes above the adaptive threshold 

are significant and interpreted as signal, whereas weight differences below are interpreted as 

noise. The adaptive threshold is limited by  and  to guarantee that (1) mass changes 

smaller than the lysimeter measurement accuracy are understood as remaining noise and therefore 

not considered for the flux calculation and (2) noise is not interpreted as signal during weather 

conditions, which produce noisy lysimeter readings (i.e. thunderstorms with strong wind gusts). 

Lysimeter calibration tests with standard weights at the study site indicate a system scale resolution 

of 0.05 kg. We chose a slightly higher threshold (  = 0.055 kg) with an adequate tolerance for 

our TERENO lysimeter devices. For the upper threshold  = 0.24 kg was taken, similar to the 

example presented by Peters et al. (2014). 

For the separation of precipitation and actual evapotranspiration ( ) AWAT assumes that 

increases of lysimeter and leachate weights (averaged over a period of one minute) are exclusively 

related to precipitation and negative differences to ETa [M T
-1

]. Supposing that no 

evapotranspiration occurs during a precipitation event and assuming a fixed water density of 1000 

kg m
-3

, precipitation ( ) [M T
-1

] can be derived from the lysimeter water balance as: 

  (3.6) 

 
 

(3.7) 

where  is the amount of leachate water [M T
-1

] and the change of soil water storage 

[M T
-1

] with time. After smoothing the fluxes at one minute resolution were cumulated to hourly 

sums of P and . 

Although the six lysimeters have a similar soil profile, technical configuration and management 

(i.e. grass cut, maintenance), differences in measured values between lysimeters are not exclusively 

related to random errors. Systematic weight variations may for example be caused by soil 

heterogeneity, mice infestation and differences in plant dynamics. In this study precipitation 

measured by lysimeter and TB are compared, as well as evapotranspiration measured by lysimeter 

and eddy covariance. The precipitation or  averaged over the six redundant lysimeters are used 

in this comparison. We assume that the lysimeter average of six redundant lysimeter devices is the 

most representative estimation for the lysimeter precipitation and actual evapotranspiration (unless 

specified otherwise). 
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 Eddy Covariance Data 3.2.3

Eddy covariance raw measurements were taken with a frequency of 20 Hz and fluxes of sensible 

heat (H) and latent heat (LE) were subsequently calculated for intervals of 30 minutes by using the 

TK3.1 software package (Mauder and Foken, 2011). The complete post-processing was in line with 

the standardized strategy for EC data calculation and quality assurance presented by Mauder et al. 

(2013). It includes the application of site specific plausibility limits and a spike removal algorithm 

based on median absolute deviation of raw measurements, a time lag correction for vertical wind 

speed with temperature and water vapor concentration based on maximizing cross-correlations 

between the measurements of the used sensors, a planar fit coordinate rotation (Wilczak et al., 

2001), corrections for high frequency spectral losses (Moore 1986), the conversion of sonic 

temperature to air temperature (Schotanus et al., 1983) and the correction for density fluctuations 

(Webb et al,. 1980). Processed half hourly fluxes and statistics were applied to a three-class quality 

flagging scheme, based on stationarity and integral turbulence tests (Foken and Wichura, 1996) and 

classified as high, moderate and low quality data. For this analysis only high and moderate quality 

data were used, while low quality data were treated as missing values. To assign half hourly fluxes 

with its source area the footprint model of Korman and Meixner (2001) was applied. 

Almost every eddy covariance site shows an unclosed energy balance, which means that the 

available energy (net radiation minus ground heat flux) is found to be larger than the sum of the 

turbulent fluxes (sensible plus latent heat flux) (Foken, 2008; Foken et al., 2011). In this study the 

energy balance deficit (EBD) was determined using a 3-h moving window around the 

measurements (Kessomkiat et al., 2013): 

  (3.8) 

where  is average net radiation [M T
-3

],  is average soil heat flux [M T
-3

],  is average 

latent heat flux [M T
-3

],  is average sensible heat flux [M T
-3

], and  is average heat storage 

(canopy air space, biomass and upper soil layer above ground heat flux plate) [M T
-3

]. All these 

averages are obtained over a three hour period around a particular 30 min EC-measurement. The 

moving window of three hours is a compromise between two sources of error. First, it guarantees a 

relatively small impact of random sampling errors and therefore increases the reliability of the EBD 

calculation. Second, the relatively short interval ensures that the calculations are not too much 

affected by non-stationary conditions. It was assumed that the energy balance deficit is caused by 

an underestimation of the turbulent fluxes and therefore the turbulent fluxes are corrected 

according to the evaporative fraction.  
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The evaporative fraction (EF) was determined for a time window of seven days: 

  (3.9) 

where  and  [M T
-3

] are the latent and sensible heat fluxes averaged over seven days. The 

chosen time period increases the reliability for EF calculation compared to single days. Dark days 

with small fluxes may not give meaningful results. Kessomkiat et al. (2013) investigated the impact 

of the time window on the calculation of the EF and found that a moving average over seven days 

gives good results, whereas a too short time window of one day gives unstable, unreliable results. 

The energy balance corrected latent heat flux was determined by redistribution of the latent heat on 

the basis of the calculated evaporative fraction: 

  (3.10) 

where  is the latent heat flux (for a certain measurement point in time; i.e. a 30 minutes 

period for our EC data). The EBD is added to the uncorrected LE according to the partitioning of 

heat fluxes in the EF. Further details on the EBD correction method can be found in Kessomkiat et 

al. (2013). 

In this study, also the evapotranspiration (ETa-EC) calculated with the original latent heat flux (not 

corrected for energy balance closure) will be presented for comparison. Furthermore, the most 

extreme case would be that the complete EBD is linked to an underestimation of the latent heat 

flux. Some authors argue (Ingwersen et al., 2011) that the EBD could be more related to 

underestimation of one of the two turbulent fluxes than the other turbulent flux. Therefore, as an 

extreme scenario the complete EBD is assigned to the correction of the latent heat flux. 

ETa-EC is calculated from the latent heat flux according to: 

  (3.11) 

where ETa is ETa-EC [L T
-1

],  is latent heat flux [M T
-3

],  is the density of water [M L
-
³] 

and  is the vaporization energy [L
2
 T

-2
] at a given temperature. 

The lysimeters are thought to be representative for the EC footprint, although size and shape of the 

EC footprint are strongly temporally variable. However, the EC footprint is almost exclusively 

constrained to the grassland and the lysimeters are also covered by grass. 



36 
Chapter 3 
Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket 

 

 

 Grass Reference Evapotranspiration 3.2.4

The measurements of ETa by the EC-method and lysimeters were in this study compared with 

evapotranspiration calculated with full-form Penman-Monteith equation as presented by Allen et al. 

(1998). This approach accounts for vegetation and ground cover conditions during crop stage 

considering bulk surface and aerodynamic resistances for water vapor flow. The calculations were 

adapted for hourly intervals according to Eq. 3.12: 

  

 

(3.12) 

where is the hourly Penman-Monteith evapotranspiration [L T
-1

],  is net radiation at the 

grass surface [M
 
 T

-3
],  is soil heat flux density [M

 
 T

-3
],  is mean hourly virtual 

temperature [ ],  is the specific gas constant for dry air [L
 2
 T

-2
 

-1
],  is the aerodynamic 

resistance [T L
-1

],  is the (bulk) surface resistance [T L
-1

],  is the ratio molecular weigth of 

water vapour (dry air) [-],  is mean hourly air temperature [ ], slope of the saturated vapour 

pressure curve at  [M L
-1

 T
-2

 
-1

],  is psychrometric constant [M L
 -1

 T
-2

 
-1

],   is 

saturation vapour pressure for the given air temperature [M L
-1

 T
-2

],  is average hourly actual 

vapour pressure [M L
-1

 T
-2

], and  is average hourly wind speed [L T
-1

] at 2 m height. All required 

meteorological input parameters for calculating  were taken from the EC station. The wind 

speed data were corrected to 2 m using the FAO-standard wind profile relationship of Allen et al. 

(1998). 

We approximated aerodynamic resistance ( , (bulk) surface resistance ( ) and leaf area index 

(LAI) with help of grass height according to Allen et al. (2006): 

 
 

 

(3.13) 

 

 (3.14) 

 

 (3.15) 

where  is the height of the wind measurement [L],  is the height of the humidity measurement 

[L],  is the grass length [L] at the lysimeter,  is the von -],  the 

stomatal resistance [T L
-1

], and  the active leaf area index taking into account that only the 

upper grass surface contributes to heat and vapor transfer [-]. For our calculations we assume a 

fixed stomatal resistance for a well-watered grass cover of 100 s m
-1

 in accordance to Allen et al. 
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(1998). The grass length at the lysimeters was estimated with the help of maintenance protocols 

and the surveillance system. Grass lengths between two measurement intervals were linearly 

interpolated on a daily basis. 

 Precipitation Correction 3.2.5

A precipitation correction according the method of Richter (1995) was applied (Eq. 3.16/3.17) on a 

daily basis to account for wind, evaporation and wetting losses of the tipping bucket precipitation: 

  (3.16) 

  (3.17) 

where  is the corrected daily precipitation [M T
-1

],  is the measured tipping bucket 

precipitation [M T
-1

],  the estimated precipitation deficit [M T
-1

],  the site specific wind 

exposition coefficient [-], and  the empiric precipitation type coefficient [-].  

This correction method is widely used for German weather service stations and relies on 

empirical relationships of precipitation type and wind exposition, without using direct wind 

measurements. In order to determine both empirical coefficients e categorized the 

precipitation type with the help of air temperatures on a daily basis. It was assumed that 

temperatures below 0 °C result in solid precipitation, temperatures between 0 °C and 4 °C give 

mixed precipitation and air temperatures above 4 °C only liquid precipitation. Furthermore, the rain 

gauge is located in an open area and the summer period was defined from May to September and 

the winter period from October to April. The corresponding correction coefficients were calculated 

according to Richter (1995) and are provided in Table 3.1. 

Table 3.1: Site specific wind exposition coefficient b [-] and empiric precipitation type coefficient 

 [-] for different precipitation types at an open space gauge location. 

 

Precipitation Type   

liquid (summer) 0.345 0.38 

liquid (winter) 0.34 0.46 

mixed 0.535 0.55 

snow 0.72 0.82 
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3.3 Results and Discussion 

 Precipitation Measurements 3.3.1

Table 3.2 shows the monthly precipitation sums measured by the tipping bucket (TB) and 

calculated from the lysimeter balance data for the year 2012. The precipitation difference between 

both devices for the year 2012 is 145.0 mm implying a 16.4 % larger average lysimeter 

precipitation than TB. For the individual lysimeters the yearly precipitation ranges from 996.2 mm 

to 1037.7 mm (-3.0 to +1.0 % compared to the lysimeter average). This implies that the minimum 

and maximum precipitation differences between individual lysimeters and TB were 114.1 mm 

(12.9 %) resp. 155.6 mm (17.6 %), where precipitation for lysimeters was always higher than for 

TB. The monthly precipitation sums for the period April-October measured by the tipping bucket 

are smaller than the ones from the lysimeter average and differences range between 1 % in July and 

42 % in September. The winter months show higher relative differences. The highest difference 

was found in March 2012, when the lysimeters registered an amount of precipitation double as 

large as the TB. The precipitation sums measured by lysimeter and tipping bucket correlate well on 

an hourly basis, especially from April to October with R
2
 varying between 0.74 (Apr) and 0.99 

(May), but with the exception of September (0.58). For winter months the explained variance is 

smaller with a minimum of 13% for February 2012.  

Table 3.2: Monthly precipitation sums for lysimeter, tipping bucket, corrected tipping bucket 

(TBcorr) data and a comparison between the hourly precipitation values of lysimeter and 

uncorrected TB in terms of coefficient of determination (R
2
), root mean square error and other 

statistics at the Rollesbroich study site for 2012. Missing data % refers to the percentage of hourly 

precipitation data not available for comparison.  

Month 

Lysimeter 

Average 

[mm] 

Min. / Max. 

Lysimeter 

[mm] 

Tipping 

Bucket 

[mm] 

Tipping 

Bucket 

corrected 

[mm] 

R2 RMSE 
LYS/TB 

% 

LYS/ 

TBcorr 

% 

Missing 

Data % 

Jan 70.9 57.6 / 79.3 94.0 110.7 0.48 0.30 75.6 64.0 11.2 

Feb 36.2 31.4 / 48.9 21.1 26.0 0.13 0.32 171.6 139.2 46.1 

Mar 17.3 16.2 / 18.8 5.1 7.3 0.18 0.16 339.2 237.0 16.4 

Apr 72.5 71.1 / 74.6 65.3 78.2 0.90 0.09 111.0 92.7 0.0 

May 90.7 89.4 / 94.1 79.3 88.8 0.99 0.09 114.4 114.4 0.0 

Jun 139.9 137.5 / 143.1 134.7 147.2 0.96 0.21 103.9 95.0 0.0 

Jul 148.5 146.3 / 152.2 147.0 159.2 0.95 0.28 101.0 93.3 0.0 

Aug 105.7 100.4 / 109.4 84.5 91.9 0.94 0.15 125.1 115.0 0.0 

Sep 36.5 23.5 / 39.2 25.6 30.5 0.58 0.13 142.6 119.7 0.0 

Oct 67.5 65.7 / 69.5 66.2 75.2 0.74 0.23 102.0 89.8 13.4 

Nov 55.3 52.7 / 56.9 38.3 45.8 0.84 0.08 144.4 120.7 0.0 

Dec 186.0 178.5 / 194.4 121.0 136.1 0.30 0.35 153.7 136.7 0.0 

SUM 

/MEAN 
1027.1 

996.2 / 

1037.7 
882.1 996.9 0.88 0.47 116.4 103.0 7.1 
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The period April-August shows the smallest precipitation differences among the six lysimeters with 

monthly values of ±5 % in relation to the lysimeter average. In contrast, February, September, and 

December exhibit the highest absolute and relative precipitation differences among lysimeters with 

Variations between -13 and 13 mm (±35 %) with respect to the mean. Figure 3.3 shows the 

absolute daily differences in precipitation between lysimeter and TB measurements. It shows that 

the cases where lysimeters register slightly higher monthly precipitation sums than TB are related 

to single heavy rainfall events (June, July). In contrast, especially for February, the beginning of 

March, and the first half of December, larger fluctuations in differences between daily precipitation 

measured by TB and lysimeter are found, with less precipitation for TB than for lysimeters most of 

the days.  

 

Figure 3.3: Daily precipitation sums of tipping bucket (blue) and difference in precipitation 

measurements between lysimeter and TB (red) at the Rollesbroich study site for 2012. 

 

These periods coincide with freezing conditions and frequent episodes with sleet or snowfall. 

According to evruk (1999) these weather conditions are typically associated with a 

large tipping bucket undercatch because snowflakes are easier transported with the deformed wind 

field around a rain gauge. The surveillance system, which is installed at the lysimeter site, gives 

support for these findings. For example, a sleet precipitation event on March 7
th
 explains 70 % (8.5 

mm) of the monthly precipitation difference between lysimeter and TB. At this day the wind speed 

during the precipitation event was relatively high (4.4 m s
-1

) and precipitation intensity varied 

between 0.6 and 2.9 mm h
-1

. In general, winter measurement inaccuracies can be caused by frozen 

sensors and snow or ice deposit on the lysimeter surface. This situation may cause ponding effects 

close to the soil surface in the lysimeter and superficial runoff. In order to further address the 

lysimeter uncertainty, we calculated the average cumulative drainage and soil water storage with 
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minimum and maximum ranges for the individual lysimeters (Figure 3.4). The soil water storage 

was determined by the remaining term of the water balance on a daily basis. The total drainage, 

averaged over the six lysimeters was 411.2 mm for 2012 with a variation between 385.5 and 

440.4 mm. The soil moisture storage change over the year varies between -5.1 mm to 28.3 mm 

with an average of +11.2 mm. The assessment of drainage volumes and changes in soil water 

storage was somewhat hampered by erroneous data related to drainage leakage (January) or system 

wide shut down due to freezing. However, the uncertainty in the water balance during those periods 

should have a minor effect on the short term calculations of lysimeter P and ETa. 

In order to explain differences in precipitation amounts between lysimeter and tipping bucket, the 

contribution of dew and rime to the total yearly precipitation amount was determined. The hourly 

data of lysimeter and TB were filtered according meteorological criteria. First, meteorological 

conditions were selected which favor the formation of dew, rime, fog and mist. Selected were small 

precipitation events between sunset and sunrise associated with high relative humidity (> 90 %), 

negative net radiation and low wind speed (< 3.5 m s
-1

). Under these meteorological conditions it is 

probable that dew or rime is formed after sunset and before sunrise on cloud free days. For these 

days the difference in precipitation between TB and lysimeter is calculated if TB shows no 

precipitation signal or if the lysimeter has no precipitation signal. For the first case (P-TB=0) the 

total amount of the lysimeter precipitation is 24.5 mm, which contributes 16.9 % to the total yearly 

precipitation difference with the TB (and 2.4 % of the yearly lysimeter precipitation). The period  

 

 

Figure 3.4: Cumulated average of lysimeter drainage and soil moisture storage on a daily basis.  

The colored areas indicate the range of minimum and maximum cumulated drainage and soil water 

storage for the individual lysimeters. 
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from April to August shows in general smaller precipitation amounts related to such situations. In 

contrast, likely dew and rime conditions where lysimeter precipitation is zero have a registered 

amount of TB-precipitation of 1.7 mm, which is only 0.2 % of the total measured TB amount for 

the considered period. A closer inspection of the precipitation data shows that both devices are able 

to capture dew and rime. However, a delay of some hours between TB and lysimeters was found. It 

is supposed that dew or fog precipitation was cumulating in the TB device until the resolution 

threshold of 0.1 mm was exceeded. This indicates that the TB resolution of 0.1 mm is too coarse to 

detect small dew and rime amounts in a proper temporal assignment. This confirms the expected 

ability of the lysimeter to measure rime and dew better than Hellman type pluviometers or tipping 

bucket devices. The surveillance system was used to check whether indeed dew/rime was formed 

on the before-mentioned days. On days which fulfilled the criteria and air temperatures close to or 

below 0 C rime was seen on the photos. For days that fulfilled the conditions and temperatures 

above 0 C camera lenses were often covered with small droplets. 

Weather conditons with drizzle or fog occur frequently at the study site. This is related to humid air 

masses from the Atlantic which are transported with the dominating Southwestern winds and lifted 

against the hills in this region. The surveillance system was used to detect fog and drizzle situations 

during the year 2012. For those situations, a difference in precipitation between TB and lysimeters 

of 8 mm was found, which contributes 5.5 % to the yearly difference of both devices. Fig. 6 

illustrates the example of May 5  May 6 2012. The hourly photos of the site show drizzle, light 

rain and fog for this period. For both days the air temperature is close to the dew point temperature. 

The precipitation difference between tipping bucket and lysimeter over this period was 4.0 mm (  

TB: 12.8 mm,  LYS: 16.8). The maximum  difference was 0.5 mm and found at 6 h on the 5
th
 of 

May in combination with fog. On May 5 during these conditions hourly TB precipitation is often 

zero and LYS mean precipitation rates are small (0.02 - 0.2 mm hr
-1

). The comparison of individual 

lysimeter devices shows that not every lysimeter exceeds the predefined lower threshold of 0.055 

mm for the AWAT filter (i.e. 5
th
 of May 15:00, 6

th
 of May 01:00-03:00 LT). However, in these 

cases at least three lysimeters show a weight increase, which supports the assumption that a real 

signal was measured instead of noise.  

With the purpose of explaining the remaining difference in precipitation amount between TB and 

lysimeter, the relationship between wind speed and the precipitation differences was examined. The 

determined precipitation differences could in theory be explained by undercatch related to wind 

(Sevruk, 1981, 1996). It was checked whether correcting the tipping bucket data (TBcorr) according 

to the method of Richter (1995) could reduce the precipitation difference between lysimeter and 

TB. The total precipitation sum after correction is 996.9 mm for 2012, only 3% smaller than the 

yearly lysimeter average and within the range of the individual lysimeters. 
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Figure 3.5: Precipitation, temperature and dew point temperature from May 5  May 6 2012 at the 

Rollesbroich site. The fog symbol indicates the hours with fog occurrence (detected with installed 

surveillance system) for the investigated period. 

 

The correction of TB data in general decreased the differences in the winter period (January  

March, November - December). However, for the summer period the monthly precipitation sum of 

TBcorr mainly overestimated precipitation and tended to slightly increase the precipitation 

differences.  In order to explore this relation further we examined the correlation between wind 

speed and precipitation residuals and found almost no correlation (Figure 3.6). A possible 

explanation is that other potential dew or rime situations are not properly filtered by the used 

criteria (e.g, dew occurs in case the net radiation is slightly positive or close to zero). Additionally, 

the correlation between undercatch and wind speed is dependent on precipitation type, intensity and 

drop size, for which information was limited during the investigation period. To investigate these 

relations we used the classification of precipitation types as outlined before. The contribution of 

liquid precipitation to total yearly precipitation is 80.9 % for the TB and 74.7 % for the lysimeters. 

The relative amount of solid precipitation was also different between the two measurement 

methods. Whereas for the lysimeters 7.8 % (79.7 mm) was classified as solid precipitation, the TB 

had only 0.6 % (5.6 mm) during periods with temperature < 0 °C. In relation to the total 

precipitation difference of 145 mm this means that 51 % of the difference was associated with solid 

precipitation events and 37 % with liquid precipitation events, which indicates the relatively large 

contribution of solid precipitation events to the total difference. The transition range (0-4 °C) 
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makes up 12 % of the total difference. Moreover, it was found that 78.7 % of the solid precipitation 

came along with small precipitation intensities (< 1.0 mm h
-1

) and low wind speeds (< 2.0 m s
-1

). 

The surveillance system allowed to further investigate these large precipitation differences for air 

temperatures below zero. The snow depth at the lysimeters and surrounding areas is also an 

indication of precipitation amounts, assuming that 1 cm snow height corresponds to 1 mm 

precipitation. This method revealed that for conditions of light to moderate snowfall (< 4 mm h
-1

 

precipitation intensity) the TB had a precipitation undercatch in January, February and December 

of 11.4 mm (7.9 % of total precipitation difference). The registered precipitation amount of the 

lysimeter under those conditions was realistic. However, during periods where the lysimeters were 

completely covered by snow (e.g. 1  15 February) precipitation estimates by lysimeter (up to 16 

mm d
-1

 difference with tipping bucket) could not be confirmed by the camera system and were 

most probably influenced by snow drift or snow bridges. These situations explain 35.8 % 

(51.9 mm) of the total precipitation difference for 2012. For solid precipitation events a relationship 

(R²=0.5) between precipitation differences and wind speed was found, but the number of datapoints 

was very limited (n=7). For conditions of liquid precipitation no correlation was found between 

residuals and wind speed (R²<0.02). 

 

Figure 3.6: Relationship between wind speed and precipitation residuals relative to TB 

precipitation on a daily basis. The relationsships are classified according precipitation intensities of 

1-5 mm (a), 5-10 mm (b), and > 10 mm (c). Potential rime and dew situation are excluded from the 

calculation. 

 

 Comparison of Evapotranspiration 3.3.2

In general, the yearly sums of ETPM and ETa-LYS were slightly higher than ETa-EC; 6.1 % for 

ETPM and 2.4 % for ETa-LYS. The minimum ETa of the individual lysimeter measurements (ETa-

LYSmin) is 467.1 mm, which is 7.9 % smaller than the lysimeter average (507.4 mm); the 

maximum (ETa-LYSmax) is 523.1 mm (+ 3.1 %). This indicates that in general over the year 2012 

evapotranspiration was limited by energy and not by water, as actual evapotranspiration was close 

to a theoretical maximum value for well watered conditions as estimated by ETPM. This also 
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implies that our assumption of a stomatal resistance corresponding to well-watered conditions was 

justified. Water stress conditions would lead to decreased plant transpiration rates and increased 

stomatal resistance. Table 3.3 lists the evapotranspiration results of January  December 2012. In 

2012 ETPM was always close to ETa-LYS and ETa-EC and there are no months that ETPM is clearly 

larger than measured actual evapotranspiration by lysimeter and eddy covariance. Root mean 

square errors of hourly ETa sums vary between 0.01 mm h
-1

 in winter and 0.11 mm h
-1

 in summer 

months and are in phase with the seasonal ET dynamics. 

We focus now on the comparison of monthly ETa-LYS and ETa-EC sums within the investigated 

period. During winter periods with low air temperatures and snowfall ETa-LYS and ETa-EC 

showed larger relative differences. For the period March to May ETa-LYS and ETa-EC differ 

approx. 6 % and ETa-LYS exceeds ETa-EC from June to August by 12 %. The larger difference in 

August (23 %) explains the yearly difference between ETa-EC and ETa-LYS. Hourly actual 

evapotranspiration from lysimeter and hourly actual evapotranspiration from EC are strongly 

correlated, but correlation is lower in the winter months. The registered monthly ET by the 

 

Table 3.3: Monthly ETa (by lysimeter and EC), ETPM sums and R² between different ET data 

products on an hourly basis for 2012. Missing data % refers to the percentage of hourly ET data 

(ETa-EC, ETa-LYS) between sunrise and sunset not available for comparison. Hence, the total 

yearly ET amount is ca. 18 % reduced compared to gap free ET estimations.  

 

2012  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum Mean 

ETa-EC 

[mm] 
5.2 1.3 27.8 38.4 84.3 62.7 80.3 94.2 56.0 25.2 9.3 3.6 488.  

ETPM  

[mm] 
3.9 1.5 30.5 37.5 84.2 69.7 84.0 113.5 58.9 24.6 9.0 2.5 519.8  

ETa-LYS 

[mm] 
2.5 2.2 26.4 35.6 80.2 65.7 82.7 121.7 52.7 23.9 7.6 5.9 507.4  

Min. / Max. 

ETa-LYS 

[mm] 

2.1 

/ 

2.7 

1.3 

/ 

3.1 

25.9

/ 

26.8 

34.4

/ 

37.6 

75.2 

/ 

85.2 

62.1

/ 

68.2 

67.8

/ 

91.0 

116.8 

/ 

125.2 

49.6

/ 

58.8 

21.9

/ 

27.1 

6.8  

/ 

8.9 

3.0 

 / 

8.7 

467.1 

/ 

523.1 

 

R² 

ETa-EC  

- ETa-LYS 

0.02 0.02 0.82 0.76 0.79 0.84 0.86 0.86 0.66 0.66 0.39 0.06 
 

0.81 

R² 

ETa-LYS  

 ETPM 

0.13 0.00 0.87 0.82 0.86 0.91 0.89 0.92 0.78 0.70 0.41 0.08 
 

0.89 

R² 

ETa-EC 

  ETPM 

0.12 0.00 0.94 0.93 0.95 0.90 0.89 0.88 0.88 0.82 0.73 0.44 
 

0.91 

Missing 

Data 

% 

33.2 36.9 8.1 23.5 21.5 26.5 21.9 12.9 14.0 25.8 25.0 45.3 24.5  
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different lysimeters shows the largest variations in July with amounts that are up to 14.0 mm lower 

and 8.0 mm higher than the ET averaged over all six lysimeters. 

Figure 3.7 shows the cumulative curve of the daily ETa-LYS and ETa-EC compared to ETPM for 

2012. From end of March 2012 the sums of ETa-LYS and ETa-EC tend to converge, but at the end 

of May ETa-EC exceeds ETa-LYS. In June and July ETa-LYS and ETa-EC are very similar, but in 

August ETa-LYS is larger than ETa-EC. After August the difference between ETa-LYS and ETa-EC 

does not increase further. The area in grey represents the range of minimum and maximum 

cumulative ETa-LYS, measured by individual lysimeters. Until August ETa-EC and ETPM are 

slightly higher or close to the maximum measured ETa-LYS. In August ETPM increases further, 

wheras ETa-EC falls below the minimum lysimeter value. Additionally, Figure 3.7 shows the 

course of the ETa-EC without correction for EBD and for ETa-EC max.. ETa-uncorr is ca. 411 mm 

over this period, whereas ETa-EC max is 567 mm, which shows the large potential uncertainty of 

the EC-data. The comparison illustrates that the application of the Bowen ratio correction to the EC 

data results in an actual evapotranspiration estimate close to the actual evapotranspiration from the 

lysimeter, whereas ETa-EC uncorr is much smaller than the lysimeter evapotranspiration. 

 

 

Figure 3.7: Cumulative ETa-LYS, ETa-EC (corrected according to Bowen ratio), ETPM on hourly 

asis for 2012. Displayed are also ETa-EC max. and ETa-EC min. The area in grey shows the range 

of minimum and maximum cumulated ETa for the individual lysimeters. 

  



46 
Chapter 3 
Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket 

 

 

Table 3.4 lists the monthly latent heat fluxes, the corrected LE fluxes (on the basis of the Bowen 

ratio) and the mean differences between both. It was found that the absolute difference is between 

29.8 W m
-
² (August 2012) and 3.2 W m

-
² (February 2012). The EBD ranges from 12.6 % - 24.2 % 

for the period April to September. The yearly maximum was found in February with 36.9 %. EB 

deficits are site-specific, but these findings confirm the importance of EC data correction as 

suggested by Chavez et al. (2009). 

In order to explain the differences between ETPM, ETa-EC and ETa-LYS, we investigated the 

variations in radiation, vegetation and temperature regime and their impact on ET in more detail. 

The albedo could be estimated according to the measured outgoing shortwave radiation at the EC-

station divided by the incoming shortwave radiation, also measured at the EC-station. The yearly 

mean albedo is 0.228, which is close to the assumed albedo of 0.23 for grassland.  However, some 

periods (i.e. periods with snow cover) have a much higher albedo. Although albedo variations 

between different vegetation growth stages at different fields at the study site were considered as 

explanation for differences in ETa, we assume similar albedo for ETa-EC and ETa-LYS 

measurement due to the central location of of the radiation measurements between the relevant 

fields. 

The grass length is related to the LAI, which impacts water vapor flow at the leaf surface. Under 

well-watered conditions more surface for plant transpiration leads in general to higher transpiration 

rates by decreasing the bulk surface resistance. Figure 3.8 shows that the grass length measured at 

the Rollesbroich site is up to 80 cm before cutting. Unfortunately, grass height measurements are  

 

Table 3.4: Measured mean monthly latent heat fluxes and corrections for EBD for 2012. 

Month 
Mean LE 

[W m
-2

] 

Mean LE corr. 

[W m
-2

] 

Differences  

LE corr. - LE  

Difference mean LE 

corr. - LE % 

Jan 21.9 29.8 7.9 36.2 

Feb 8.7 11.9 3.2 36.9 

Mar 78.1 94.0 15.9 20.4 

Apr 86.4 101.8 15.3 17.7 

May 138.7 164.6 25.9 18.7 

Jun 111.8 125.8 14.0 12.6 

Jul 136.3 157.2 20.9 15.3 

Aug 151.6 181.4 29.8 19.6 

Sep 104.0 129.2 25.2 24.2 

Oct 61.3 79.6 18.3 29.9 

Nov 24.4 32.1 7.7 31.4 

Dec 22.0 28.3 6.3 28.5 

SUM/MEAN 78.8 94.6 15.9 24.3 
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not available for the lysimeters but only for the surrounding field. It is assumed, on the basis of 

information from the video surveilance system, that grass heights generally are in good agreement 

between lysimeters (lysimeter site) and the surrounding field (lysimeter field), which allows a 

reconstruction of the grass length illustrated in Figure 3.8. However, the grass harvesting dates of 

lysimeters and surrounding field deviate in August and September and are given for the lysimeters 

in Figure 3.8. 

 

Figure 3.8: Grass heights at the lysimeter field, the lysimeter devices, and the field behind the EC 

station for 2012. The grass length at the lysimeter devices was reconstructed by comparing grass 

length measurements of the lysimeter field with the observations of the surveillance system. The 

star (*) indicates the presence of a snow cover. Grass cutting dates on lysimeter devices are marked 

by dashed lines. 

 

Figure 3.9 illustrates the differences of the measured daily ETa sums between lysimeter and EC. 

High positive and negative differences up to 2.1 mm/day were found from March 2012  

September 2012. In general, the differences of ETa-LYS and ETPM show smaller fluctuations than 

the differences of ETa-EC and ETPM. It was found that lysimeter harvesting affects the differences 

between ETa-LYS and ETPM/ETa-EC. The differences were positive before harvesting and negative 

after harvesting indicating ETa reduction due to the grass cutting effects. For the period from the 

21
st
 of May to the 3

rd
 of July, a period with high grass length differences (Figure 3.8) between the 

lysimeter site and the field behind the EC-station, ETa differences (ETa-EC - ETa-LYS) and grass 

length differences show a good correlation (R²=0.58), which is illustrated in Figure 3.10. During 

the period with maximum grass length difference (24 May  1 June) ETa-EC is 26 % higher than 

ETa-LYS.  
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Figure 3.9: Differences between daily ET for 2012. Displayed are ETa-EC  ETPM (a), ETa-LYS  

ETPM (b) and ETa-LYS  ETa-EC (c). The dashed lines indicate harvest at lysimeters. 

 

 

Figure 3.10: Relationship between grass length difference (between the lysimeters and the field 

behind the EC-device) and ETa difference measured by lysimeters and EC station from 

May 21- July 3. 
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The differences between ETa-EC and ETPM do not show such a significant correlation with grass 

heights, although the relationship in August is in correspondence with the differences of ETa-EC 

and ETa-LYS. This could be related to the EC-footprint, because the EC station is centrally located 

in between the two investigated fields with different grass lengths. The EC-footprint might also 

include other surrounding fields with different grass heights. 80 % of the EC footprint is located 

within a radius of 100 m of the EC tower, and 70 % in a radius of 40 m, which is the approximate 

lysimeter distance. Therefore, the ETa-EC estimations represent a spatial mean of a wider area, 

where cutting effects are averaged compared to the lysimeter point measurements. Figure 3.11 

shows the mean hourly ETa rates of lysimeter and EC as well as the ETPM for 2012. In general, the 

daily courses and the daily maxima of ETa-LYS, ETPM and ETa-EC correspond well. ETa-EC shows 

higher peaks at noon in May and September compared to ETa-LYS, but corresponds well to ETPM. 

In contrast, ETa-LYS exhibits the highest rates from June to August. The absence of a harvest of 

the lysimeter in August and the first September decade (in contrast to the surrounding fields) leads 

to potentially increased lysimeter ETa measurements as compared to the surroundings due to an 

island position.  

In order to examine whether lysimeter measurements could have been affected by a soil 

temperature regime different from the field, the temperature regimes of the lysimeters were 

compared to the field temperature. Figure 3.12 shows the daily mean soil temperature differences 

between the lysimeters, a nearby SoilNet device (SN 30) and the mean of all available SoilNet  

 

 

Figure 3.11: Mean daily cycle of ETa-LYS, ETa-EC and ETPM for 2012. 
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devices installed at the southern study site. SoilNet temperatures were measured 5 cm below 

surface; lysimeter temperature measurements were conducted with SIS sensors in 10 cm depth. The 

temperature differences between the lysimeter and the nearby SoilNet device and the SoilNet mean 

are less than 1 K, which is as well the range of variation of the SoilNet device with respect to the 

SoilNet mean. In general the temperature differences increase until noon and then decrease again. 

Positive differences from May to July indicate higher lysimeter soil temperatures than the 

surroundings. However, a clear indicator for a bias caused by an oasis effect in the lysimeter 

measurements was not found. Feldhake and Boyer (1986) describe the effect of soil temperature on 

evapotranspiration for different grass types, which allow an estimation of ETa increase caused by a 

differing lysimeter temperature regime. They showed that daily ETa rates can increase with an 

increase of soil temperature (i.e. daily Bermuda grass ETa rate increases from 4.3 mm/day to 6.4 

mm/day (49 %) for a soil temperature increase from 13 to 29 °C). We used this linear relationship 

to roughly estimate the effect on ETa for the period May  August on a daily basis. For this period 

the measured soil temperature with SN(30) for daylight hours ranged between 9.5 and 15.1 °C and 

between 9.3 and 15.5 °C for the lysimeter mean (SIS sensors). The mean difference is 0.67 K. This 

results in a total ETa increase of 8.8 mm or 2.5 % in relation to the total ETa-LYS of 349 mm on the 

basis of hourly ET. Therefore, the effect of increased soil temperature in the lysimeter is most 

probably limited, but not negligible. 

 

Figure 3.12: Differences in daily mean soil temperature (averaged over the six lysimeters), a 

nearby SoilNet device (SN 30) and the mean of all available SoilNet devices located at the study 

site. 
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3.4 Conclusions 

This study compares evapotranspiration and precipitation estimates calculated using a set of six 

redundant weighable lysimeters with nearby eddy covariance and precipitation measurements at a 

TERENO grass land site in the Eifel (Germany) for one year (2012). The lysimeter data at a 

temporal resolution of one minute are processed with the AWAT filter (Peters et al., 2014), which 

takes account of the lysimeter noise due to random fluctuations caused by changing weather 

conditions. Additional precipitation measurements were conducted with a classical unshielded 

Hellmann type tipping bucket and compared with lysimeter data. For the ETa comparison eddy 

covariance (EC) data is corrected for the energy balance deficit using the Bowen ratio method. 

Additionally, evapotranspiration and the evapotranspiration according the full-form Penman-

Monteith equation were calculated. 

The estimated hourly precipitation amounts derived by lysimeter and tipping bucket data show 

significant differences and the total precipitation measured by the lysimeter is 16.4 % larger than 

the tipping bucket amount. The relative differences in the monthly precipitation sums are small in 

the summer period, whereas high differences are found during the winter season. The winter 

months with solid precipitation exhibit the lowest correlations between lysimeter and tipping 

bucket amounts. Precipitation was measured by six different lysimeters and yearly amounts for 

individual lysimeters showed variations of -3.0 to 1.0 % compared to the yearly precipitation mean 

over all lysimeters. An additional comparison with corrected tipping bucket precipitation 

measurements according to the method of Richter (1995) shows in general a decrease of the 

monthly and yearly difference, which was 3 % after correction. In order to explain the differences 

in precipitation between the devices the contribution of dew, rime and fog to the yearly 

precipitation was analyzed. This was done by filtering the data for typical weather conditions like 

high relative humidity, low wind speed and negative net radiation which promote the development 

of dew and rime. For the identified cases a check was made with a visual surveillance system 

whether dew/rime was visible. During these conditions the lysimeter shows clearly larger 

precipitation amounts than the TB, which explains 16.9 % of the yearly precipitation difference. 

Fog and drizzling rain conditions, additionally identified with the help of the on-site camera 

system, explain another 5.5 % of the yearly precipitation differences. These findings indicate an 

improved ability of the lysimeters to measure dew and rime as well as fog and drizzling rain. The 

remaining 78 % of the precipitation difference between lysimeters and tipping bucket is strongly 

related to snowfall events, as under those conditions large differences were found. Lysimeter 

precipitation measurements are affected by a relatively high measurement uncertainty during 

winter weather conditions similar to TB and other common measurement methods. Thus, the 

limitations for the lysimeter precipitation measurements during those periods need further 

investigation. We found that during conditions where the lysimeters were completely covered by 
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snow, lysimeter records were unreliable, and contributed to 36 % of the total precipitation 

difference. 

Actual evapotranspiration measured by the eddy covariance method (ETa-EC) and lysimeter 

(ETa-LYS) showed a good correspondence for 2012, with larger relative differences and low 

correlations in winter in contrast to high correlations and smaller relative differences in summer. 

The variability of ETa of the individual lysimeters in relation to the lysimeter average was -7.9 to 

3.1 % in 2012 with larger absolute differences in summer. Both ETa-EC and ETa-LYS were close 

to the calculated Penman-Monteith evapotranspiration (ETPM), which indicates that 

evapotranspiration at the site was energy limited. The differences between ETa-LYS, ETa-EC and 

ETPM were mainly related to harvesting management at the study site. A relationship between grass 

length at the lysimeter and differences between ETPM and ETa-LYS was found. Variable grass 

cutting dates for different fields around the EC-station and the lysimeter harvest lead to differences 

in actual evapotranspiration up to 2.1 mm day
-1 

for periods with larger grass length discrepancies.  

The correction of the energy balance deficit with the Bowen ratio method resulted in ETa-EC which 

was close to ETa-LYS. If the correction was not applied, ETa-EC was 16 % smaller than for the 

case where it was applied. In contrast, if the EB-deficit was completely attributed to the latent heat 

flux ETa was 15.7 % larger than for the default case. These results point to the importance of 

adequate EC data correction. 
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Chapter 4 High resolution modelling of soil moisture 

patterns with TerrSysMP: A comparison 

with sensor network data 

 

*adapted from Gebler, S., Franssen, H. J. H., Kollet, S. J., Qu, W., Vereecken, H., 2017. High resolution 

modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network 

data. Journal of Hydrology, 547, 309-331. 

4.1 Introduction 

In an interacting system including lower atmosphere, vegetation, vadose zone and shallow and 

deep groundwater, the spatio-temporal variability of soil hydrological processes is of increasing 

research interest (Legates et al., 2011; Simmer et al., 2015). The soil water content (SWC) strongly 

affects the water and energy cycles by controlling the rainfall-runoff-response (Grayson et al., 

1997; Robinson et al., 2008), partitioning net radiation in latent and sensible heat fluxes (Western 

et al., 2002; Robinson et al., 2008), and through interactions with the vegetation cover (Rodriguez-

Iturbe et al., 2001). Thus, the characterization and prediction of the spatial and temporal patterns of 

soil water content is essential for understanding and quantifying the water, energy, and biochemical 

cycles of a given system (Schume et al., 2003; Ivanov et al., 2010). This insight is of great 

importance for many scientific and applied purposes (e. g. hazard prediction, soil degradation, and 

agricultural management) on local, regional and global scale (Vereecken et al., 2016). More 

specifically, advanced knowledge about the SWC spatio-temporal dynamics can support 

researchers in the optimization and uncertainty estimation of hydrological models (Heuvelink and 

Webster, 2001; Heathman et al., 2003), the construction and improvement of sensor networks 

(Heathman et al., 2009), and the calibration and validation of remote sensing products (Famiglietti 

et al., 1999; Choi and Jacobs, 2007; Rötzer et al., 2014; Greifeneder et al., 2016). 

Soil moisture patterns can be related to topography (Grayson et al., 1997; Hu et al., 2010), 

vegetation cover (Gómez-Plaza et al., 2001; Schume et al., 2004), climatic conditions (Western et 

al., 2004; Martínez et al., 2014), antecedent SWC (Pan and Peters-Lidard, 2008), soil properties 

(Vereecken et al., 2007; Wang and Franz, 2015) and/or hysteresis effects (Vivoni et al., 2010; 

Rosenbaum et al., 2012). A common measure characterizing these patterns is the relationship 

between mean SWC ( ) and its corresponding spatial variability expressed as spatial standard 

deviation ( ) or coefficient of variation. Recently, also fuzzy theory and empirical orthogonal 

function analysis were used in SWC data analysis and modelling studies (e. g. Graf et al., 2014; 
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Koch et al., 2015; Schröter et al., 2015; Hohenbrink et al., 2016). Previous modelling and field 

studies showed that the relationship between  and  usually can be described as an upward 

convex parabolic shape curve, where the spatial SWC variability increases during wetting from dry 

to intermediate soil moisture conditions and decreases for further wetting (Western et al., 2004; 

Choi and Jacobs, 2007). However, contributions of the different individual physical SWC controls 

are under discussion in the literature. For example, Hu and Islam (1998) and Vereecken et al. 

(2007) reported a causal relationship between SWC variability and soil properties like soil texture 

and structure, which are directly linked to soil hydraulic properties (e.g., saturated hydraulic 

conductivity, porosity, air entry pressure). Further, Rosenbaum et al. (2012) reported soil hydraulic 

properties in combination with antecedent SWC state mainly affecting short-term SWC during a 

wetting period. This is in line with the findings of Martini et al. (2015), Poltoradnev et al. (2016), 

and Wiekenkamp et al. (2016). During intensive precipitation events the SWC variability either 

increased due to the occurrence of preferential flow or decreased in case of intermediate or dry 

SWC state. Martínez García et al. (2014) investigated the role of vegetation and soil texture on the 

relationship of mean soil moisture and its variability using a one dimensional subsurface model 

with daily atmospheric forcing. They found soil texture, more than climate conditions, determining 

this relationship due to an observed relationship of the hydraulic conductivity and spatial 

variability. Manfreda et al. (2007) found a decrease of spatial SWC variability during wetting while 

soil texture and evapotranspiration increased SWC varibiulity during drying. They pointed out that 

the impact of different controling factors might also vary with depth. In contrast, Mascaro and 

Vivoni (2016) indicated vegetation dominating the SWC variability during the growing season for 

two semiarid study sites, whereas terrain and soil have a larger impact on SWC variability during 

periods with low vegetation cover. Despite these efforts made in identifying and characterizing the 

controls of SWC variability, the controversial results hamper a generalization of the relationship 

between  and its corresponding spatial variability. The highly non-linear interactions of the 

various controlling mechanisms make it challenging to quantify the contribution range of 

individual factors controlling SWC variability. However, studies often rely on simplified models 

with idealized test cases away from real natural surface and subsurface conditions. The SWC 

variability then is potentially affected by an underrepresentation and simplification of subsurface 

structure (Ivanov et al., 2010).  

Recent integrated process based models could potentially give better estimates of soil moisture 

patterns (Chen and Hu, 2004) and the water balance (Maxwell and Miller, 2005; Kollet and 

Maxwell, 2008) to improve the feedbacks of subsurface regarding latent and sensible heat fluxes 

(Kollet, 2009), although they are computationally intensive. The parameterization of these models 

strongly influences the soil water states and fluxes calculated by the coupled simulations (Teuling 

and Troch, 2005). This is still a challenge and requires a broad data basis for model 

parameterization and validation (Cornelissen et al., 2014). In case the spatial variability and 
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structure of these data is not properly implemented in the model it is a potential bottleneck (Beven, 

1996).  

A number of simulation studies using integrated models were dedicated to simulating high 

resolution soil moisture patterns or dynamics of discharge and evapotranspiration. For example, 

Herbst and Diekkrüger (2003) modeled the spatio-temporal soil water content variability in a 

subcatchment of the river Rhine at Berrensiefen (North Rhine-Westphalia, Germany) with 

geostatistical analysis, they found an inverse relationship of SWC semi variance and mean SWC 

during dry periods. At the same study site and using a similar model configuration, Herbst et al. 

(2006) compared five different scenarios of subsurface complexity ranging from homogeneous 

subsurface to a subsurface simulated with conditional stochastic geostatistical simulation with 

layered vertical and horizontal variations. They found a moderate but significant effect of the 

representation of subsurface complexity on runoff generation. The simulated runoff amount 

became more accurate with increasing complexity while root mean square errors decreased. Fang et 

al. (2015) compared soil moisture dynamics modeled with ParFlow-CLM (Kollet and Maxwell, 

2006;  Maxwell and Miller, 2005) and measurements of a sensor network for a small forested 

headwater catchment in the Eifel (Germany) with focus on fast lateral flow above a bedrock layer. 

They concluded that spatial SWC patterns could be better reproduced with a layered subsurface 

setup with zones of heterogeneous soil units and porosity variations. Although the total SWC 

variability could not be reproduced, they found an improved reproduction during wet seasons 

compared to dry seasons and suggested a better representation of heterogeneous soil hydraulic 

parameters for further studies. Limitations in reproducing SWC variability were potentially related 

to model parameterization and not adequately representing vertical bypass flux and lateral 

drainage. Cornelissen et al. (2014) investigated the impact of model resolution and bedrock 

hydraulic conductivity on water balance and SWC variability at the same study site. The 

introduction of a bedrock layer was almost without any effect on the soil moisture variability and 

dynamics, but Cornelissen et al. (2014) recommended a minimal model resolution of 25 m for a 

detailed reproduction of soil moisture patterns. In contrast, Ivanov et al. (2010) were more focused 

on vegetation parameterization and the hysteretic cycle on the hillslope scale. They suggested a 

homogenizing effect of vegetation on SWC variability affecting the topographic redistribution of 

precipitation. Fatichi et al. (2015) differentiated between biotic and abiotic factors controlling soil 

moisture variability in a synthetic hillslope model study. They studied different subsurface 

heterogeneities using as forcing measured meteorological data from different climate zones. While 

abiotic controls like soil hydraulic properties dominated in wet climates, biotic controls had a 

stronger impact in dry climates. They also pointed out that heterogeneity of soil properties or other 

soil characteristics (e. g. micro-topography, litter layer) increased the variability of the soil water 

content on the level of field observations, but also potentially remove the various signatures of 
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other (biotic) controlling factors. Another example for modelling high resolution soil moisture 

patterns on a regional scale was presented by Mascaro et al. (2015). They concluded that SWC 

patterns are related to soil hydraulic parameters, while vegetation and terrain elevation were more 

affecting runoff and evapotranspiration. These examples show that the holistic view on SWC 

variability and water balance components within an integrated hydrologic system is associated with 

uncertainty. For instance, subsurface soil hydraulic properties are usually derived using pedo-

transfer functions (PTF) and observed soil data, or alternatively, by inverse methods. Several 

studies (e. g. Gutmann and Small 2007; Hohenbrink and Lischeid 2014) have shown that 

subsurface parameterization highly affects even less complex hydrologic model systems. Given the 

variety of PTFs (e. g. Rawls and Brakensiek, 1989; Schaap et al., 2001; Wösten et al., 2001), 

uncertainty of soil hydraulic parameters in combination with model complexity potentially have a 

high impact on model SWC variability and other water balance components.  

Our study compares simulated spatio-temporal distributions of soil water content, 

evapotranspiration, and discharge with measurements for a headwater grassland sub-catchment in 

the Eifel (Germany) for a two-year period (2011-2012). We perform model calculations with the 

Terrestrial Systems Modeling Platform (TerrSysMP) developed by Shrestha et al. (2014) with a 

focus on soil properties as controlling factors. TerrSysMP contains the integrated physically based 

models ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 

2006) and the Community Land Model (Oleson et al., 2004; Oleson et al., 2008) in a fully coupled 

manner taking lateral subsurface flow, overland flow and topography into account, which might 

result in redistribution of soil moisture. Detailed long term data for model parameterization and 

evaluation (e.g., high resolution soil moisture data in space and time, evapotranspiration measured 

by the eddy covariance method and lysimeters, discharge measurements) are provided by the 

infrastructure initiative Terrestrial Environmental Observatories (TERENO) (Zacharias et al., 

2011). The simulations are performed with different parameterizations of soil hydraulic properties 

ranging from homogeneous to fully heterogeneous, using geostatistical simulations at a resolution 

of 10 × 10 m. We sampled hydraulic conductivity and related Mualem-van Genuchten parameters 

from probability density functions originating from two alternative initial datasets: (i) measurement 

data and pedotransfer functions; and (ii) estimated soil hydraulic parameters by 1D inverse 

modelling. Compared to previous studies, we extend analyses by taking into account the two 

alternative methods to sample hydraulic conductivity and Mualem-van Genuchten parameters. In 

addition, the uncertainty in the estimation of soil hydraulic properties is also taking into account, by 

conducting an ensemble of model simulations for each complexity scenario. 
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With this experimental setup we want to address the following research questions: 

(1) How do the different subsurface heterogeneity scenarios affect the reproduction of spatio-

temporal patterns of soil water content, discharge and evapotranspiration? 

(2) To what degree can soil water content variability be explained by subsurface heterogeneity? 

(3) What differences in model output arise due to the alternative methods to estimate prior 

distributions of soil hydraulic properties? 
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4.2 Study Site and Data  

 The Rollesbroich Catchment 4.2.1

A description of the TERENO Rollesbroich catchment is given in chapter 2.1. Figure 4.1 provides 

an overview of measurement equipment used in this study. It also shows a map of the study site 

and the location of the drainage system installed to avoid persistent saturation of the upper soil 

horizons and flooding. The diameters of the clay pipes of the ca. 80-year old system range from 3 

to 20 cm and increase in the direction of the system outlet close to the Kieselbach source. 

All atmospheric data were recorded at the EC-tower location for the period 2011- 2012 and were 

used as hourly meteorological forcing for the CLM model simulations (Figure 4.2). For 2010 and 

for gap filling, we used off-site data from the nearby LUA NRW station. Discharge, 

evapotranspiration, and soil water content data are the basis for verification of model predictions. 

 

 

Figure 4.1: Map of the Rollesbroich study site (a), Germany, showing the locations of the 

lysimeter, SoilNet devices, discharge gauges, the drainage system and the meteorological station. 

The EC-tower and the tipping bucket device are located within flat terrain of the southern test site 

whereas the Venturi-gauge (c) is positioned at the catchment outlet in the north. 
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Figure 4.2: Daily precipitation sums and daily average air temperature, incoming shortwave (SW) 

and longwave (LW) radiation and wind speed used as forcing for the CLM model for the period 

2010  2012. Data from the year 2010 were used for model spin up. 

 

 Data Processing 4.2.2

The comparison of the on-site tipping bucket gauge (TB) with lysimeter data at the Rollesbroich 

site for 2012 (Gebler et al., 2015) indicated an improved precipitation estimate using the correction 

method of Richter (1995), which accounts for evaporation, wind and wetting losses on a daily basis 

(Eq. 4.1 and Eq. 4.2). As the TerrSysMP model input requires hourly data, we redistributed the 

corrected daily precipitation amount according the hourly precipitation fraction (Eq. 4.3). 

 (4.1) 

 (4.2) 

 (4.3) 

where  is the corrected daily precipitation [M T
-1

],  is the measured daily tipping bucket 

precipitation [M T
-1

],  is the estimated precipitation deficit [M T
-1

],  the site specific wind 

exposition coefficient [-],  the empirical precipitation type coefficient [-],  is the measured 

hourly tipping bucket precipitation, and  is the corrected hourly precipitation [M T
-1

]. This is 

based on the assumption that precipitation errors at the study site are mainly affected by wind and 
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precipitation type. Diurnal variation in evaporation loss of precipitated water from the rain gauge is 

neglected. If evaporation loss would be important it should have been considered that this loss is 

larger during daytime and in summer than at nighttime and in winter. In order to estimate wind 

exposition coefficient ( ), we classified the rain gauge location as open area for the complete 

measurement period similar to Gebler et al. (2015). The precipitation type ( ) was categorized by 

daily on-site measurements of air temperature. All specific location characteristics are provided in 

Table 3.1. 

The long term analysis of the SPADE sensor SoilNet data revealed for several locations a positive 

upward trend in measured soil water content. For the measurement period 2011  2012 this trend is 

indicated by rising maximum soil water contents at soil saturation conditions during wet periods. 

The drift also continued in 2013, a relatively dry year, where the majority of the sensors gradually 

went out of service. The soil moisture trend was potentially caused by enlarged power consumption 

due to lingering moisture infiltration into measurement boxes and therefore not accounted for in the 

sensor calibration of Qu et al. (2016). 

After taking out unreliable data, we calculated a linear trend ( ) for each sensor between the 

highest soil water content in December 2011 and December 2012:  

  (4.4) 

 

Where  [L
3
 L

-3
] is maximum SWC in December 2011 at time  [T],  

[L
3
 L

-3
] is maximum SWC in December 2012 at time  [T], t [T] is the respective time step, 

and  the intercept constant [L
3
 L

-3
] .  

The correction is based on the assumption that we find similar SWC during the wet periods in both 

years. The reference ( ) is the average maximum soil water content over the years 2011 and 

2012:  

  (4.5) 

 

The onset of the before mentioned moisture issue affecting the sensors cannot be determined 

precisely and independent reference SWC datasets were not available in an adequate spatial 

resolution, and therefore the definition of the reference was somewhat arbitrary.  
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Thus, SWC differences between these observation points indicate a linear trend, which was used to 

correct measured soil water contents (Eq. 4.6).  

  (4.6) 

where  is the corrected hourly soil water content [L
3
 L

-3
] at time t [T],  is the 

measured soil water content [L
3
 L

-3
] at time t,  the estimated reference SWC, and  

the trend function 

The trend correction procedure was conducted at 82 SoilNet locations at all three depths 

individually and for both sensors installed at a given location and depth. For the evaluation of the 

simulations, we mainly use these SoilNet locations from the southern part in order to have 

continuous time series. SWC data was not available for February and beginning of March 2012 

because measurements are unreliable during frozen soil conditions. Data from the northern part 

were not available before August 2012 and went partly out of operation in mid-2013. 

Measurements of actual evapotranspiration (ET) measurements were conducted with a set of six 

weighable lysimeters (TERENO-SoilCan project, UMS GmbH, Munich, Germany) arranged in a 

hexagonal design at the southern part of the site ca. 30 m away from the EC-tower. Each lysimeter 

contains an on-site silty loam soil profile and the 1 m² surface is covered with grass species. The 

lysimeters resemble the field soil water regime, the lower boundary condition is monitored by 

tensiometers (TS1, UMS GmbH, Munich, Germany). The matric potential differences between 

lysimeter and surroundings are automatically compensated by suction rakes (SIC 40, UMS GmbH, 

Munich, Germany) injecting or removing water from the lysimeter. Further technical details can be 

found in Unold and Fank (2008). For comparison we used an hourly average actual ET derived 

from lysimeter weight data (temporal resolution: 1 min) of all six lysimeters. The data processing 

includes outlier elimination and signal smoothing for the individual lysimeter devices with an 

adaptive time window according to the method of Peters et al. (2014).  

In addition to the lysimeter measurements, sensible and latent heat fluxes were measured by the 

eddy covariance (EC) station. The EC data were corrected for the energy balance deficit according 

to the method of Kessomkiat et al. (2013). In a first step, the energy balance deficit was determined 

over a 3-hour moving window surrounding an EC-measurement. The evaporative fraction was 

calculated for an interval of 7 days surrounding the particular EC-observation. Finally, the half-

hourly latent heat flux as measured by EC was corrected for the energy balance deficit, determined 

over the 3-hour moving window, by adding part of the energy deficit to the latent heat flux. The 

added part is the evaporative fraction times the energy balance deficit. Lysimeter and eddy 

covariance measurements were only available for 2012. Further details on the data processing of 

EC and lysimeter actual evapotranspiration can be found in Gebler et al. (2015).  
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To establish a water balance for the observed data in 2012, we filled data gaps (ca. 14 % of all data) 

with ET data calculated with the full-form Penman-Monteith equation (ETPM) as presented by 

Allen et al. (1998) on an hourly basis. These gaps mainly occur outside the growing season with 

low grass height. More detailed information on the ETPM calculation for the Rollesbroich study site 

including variable bulk and surface resistance of the plants can also be found in Gebler et al. 

(2015). All required meteorological input for ETPM calculation was taken from the on-site 

measurements. This includes also measured net radiation and soil heat flux. The wind speed data 

were corrected to the 2 m FAO-standard using the wind profile relationship according to Allen 

(1998). 

Hourly discharge measurements for the Kieselbach are conducted with a Venturi-Gauge Weir close 

to the catchment outlet and two upstream Tomson gauges close to the headwaters of the 

Kieselbach. 
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4.3 Methods 

 Model setup 4.3.1

For this study, ParFlow and CLM were applied within the TerrSysMP framework (Shrestha et al., 

2014) using the external coupler OASIS3-MCT (Valcke, 2013). A model description can be found 

in Chapter 2.2. The following paragraphs hence focus on the model setup including model domain, 

vegetation parameterization and subsurface parameter sampling. 

The model domain for the Rollesbroich study site is 1280 × 1120 m with a total model depth of 3.2 

m. It was built with a lateral spatial resolution of 10 × 10 m and a variable vertical resolution 

associated with the terrain following grid (TFG). The upper layer has a depth of 0.025 m, the ten 

layers below a vertical resolution of 0.05 m and the 12
th
 layer a depth of 0.1 m. Further below, the 

vertical model resolution increases from 0.2 m (layer 13  17), to 0.5 m (layer 18  19), and 0.575 

m (layer 20) at the bedrock horizon. The lower boundary at 3.2 m soil depth was made 

impermeable. The thickness of the 10 layer CLM subsurface was adapted to match the ParFlow 

counterparts. This results in 128 x 112 grid cells with 20 layers (286720 rectilinear elements). The 

catchment area of 38 ha was extended further for practical reasons in eastern, western and southern 

direction including parts of the Rollesbroich urban area, streets and other artificial structures. In 

order to determine the flow paths and location of streams, the topographic slopes in x and y 

direction were calculated from a digital elevation model (DEM). To avoid sinks in the flow path, 

pit filling was carried out with a four neighbor pit filling algorithm. To avoid disconnection of the 

channels caused by scale discrepancies of the channel bed (0.3  1 m width) and the 1 × 1 m 

resolution of the elevation map, the slopes within Kieselbach and Roßbach locations are connected 

manually, with the help of a mask of the stream network in the domain. 

The hourly spatially uniform forcing data (Figure 4.2) were from preprocessed and corrected 

meteorological data measured on-site (2011-2012) and from the nearby LUA NRW (2010). Land 

use was C3-grass throughout the model domain with a leaf area index ranging from 0.3  3.0 [-] 

according the annual cycle. The grass rooting depth was set to 0.5 m in CLM with rooting function 

parameters (roota, rootb) having values of 10.6 (roota) and 6.0 (rootb). With this rooting 

parameterization we find 90% of all roots within the upper 30 cm of the soil profile, which is in 

accordance with literature values (e. g. Brown et al., 2010). Along the eastern, western, northern 

and southern ParFlow domain boundaries a no flow condition was set. Overland flow was 

 h m
-1/3

 accounting for the small 

streambed of 30 cm with high bank vegetation density. Model spin-up was conducted for a period 

of one year (2010) beginning with an initial hydrostatic equilibrium condition with a groundwater 

table at 1.5 m depth. The validation period was May 2011  Dec 2012 for SWC and Jan 2011  

Dec 2012 for discharge and ET. 
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In order to investigate the sensitivity of the model output to the parameterization of the van 

Genuchten subsurface hydraulic properties we tested two alternative methods for subsurface 

sampling: 

1. Van Genuchten hydraulic parameters (van Genuchten, 1980) estimated from texture and 

bulk density measurements using a ROSETTA (Schaap et al., 2001) pedo-transfer function 

(PTF). We henceforth denote this method as ROS-setup. 

2. Optimized van Genuchten hydraulic parameters estimated by 1D-inverse modelling with 

HYDRUS-1D ( ) and the shuffle complex evolution algorithm (SCE-

UA) by Duan et al. (1992). Input for these simulations were the joint probability hydraulic 

parameter distributions according to Carsel and Parrish (1988) as provided in Table 4.1. In 

the following, we refer to this method as SCE-setup. 

 

Table 4.1: Mean values, standard deviations, and correlations between transformed soil hydraulic 

parameters for a silty loam soil according to Carsel and Parrish (1988). 

Parameter Mean 
Standard 

deviation 
Ks   n 

Ks [cm day
-1

] 2.69 1.23 1.00 - - - 

 [cm
3 
cm

-3
] 0.06 0.02 -0.36 1.00 - - 

 [cm
-1

] 0.02 0.01 0.98 -0.30 1.00 - 

n [-] 1.85 0.12 0.73 -0.59 0.78 1.00 

 

Figure 4.3 gives an overview of the subsurface sampling workflow for both methods. In the first 

case (ROS), the Mualem-van-Genuchten subsurface parameters were obtained using texture and 

bulk density information of 202 soil samples at three depths (Schiedung, 2015) and the ROSETTA 

pedo-transfer software (Schaap et al., 2001). We made use of the ROSETTA H3 PTF, which relies 

on bootstrap and neural network methods and additionally provides information of the PTF 

parameter uncertainty (Schaap et al., 2001). Table 4.2 shows the range of the derived van 

Genuchten parameters at the study site for each horizon. As an alternative to the on-site 

measurements, inverse modelling can be used to estimate soil hydraulic properties (Duan et al., 

1992; Vrugt et al., 2003). Qu et al. (2014) showed that spatial variability at the Rollesbroich site 

can also be captured with a HYDRUS-1D approach. For the second case (SCE), the range of 

optimized van Genuchten parameter sets for the 82 Rollesbroich locations can be found in Table 

4.2. Further details on model and optimization setup are provided by Qu et al. (2014). As the 

SCE-UA parameter estimation typically comes along without estimation of uncertainty for soil 

hydraulic properties, we considered the discrepancy between the spatial support at the optimization 

location and the model discretization. We hence performed ordinary block kriging (Burgess and 

Webster, 1980) using the VESPER (Whelan et al., 2002) software in an unconditional manner at 

10 × 10 m model resolution for all soil hydraulic parameters. Ordinary block kriging is a standard 
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method for the interpolation of soil properties which considers the difference in the spatial support 

of the measurement and the grid cell. The estimated block kriging uncertainty at the grid support 

scale shows a similar uncertainty as the uncertainties of the ROSETTA estimation (e. g. : ± 1.3 

cm
-1

 (SCE); ± 1.5 cm
-1

 (ROS)). 

The subsequent random sampling of van Genuchten soil hydraulic properties consists of four steps 

(Figure 4.3). First, for the upper three layers, parameter values were randomly sampled from a 

multivariate normal distribution taking into account mean and (co-)variance from the ROS and 

SCE datasets. From these datasets the covariances between the individual soil hydraulic properties 

were derived. This was done separately for each location and at each depth. For the underlying 

siltstone and sandstone bedrock (horizon 4), soil hydraulic properties were randomly sampled for 

each sensor location following the parameter ranges (Table 4.2) of Bogena (2003). Second, the 

logarithmic hydraulic conductivity (log10 ) of each location for the layers at 5, 20, and 50 cm was 

additionally perturbed with a value taken from a normal distribution with mean equal to zero and a 

standard deviation of ± 0.25 log10 . With this procedure, we account for extra model uncertainty 

which may originate from an underestimation of uncertainty by the pedotransfer functions and 1D 

inversion.  

After these first two steps we have defined mean values at each location for log10 , which vary 

between soil horizons and soil units. Third, a spatial heterogeneous field of log10  was generated 

for each soil layer with sequential Gaussian simulation using GCOSIM3D (Gómez-Hernández and 

Journel, 1993), conditioned to the hydraulic conductivities estimated from the local probability 

density function at the sensor locations. The variogram parameters (range, sill, nugget) were 

obtained from fitting the experimental semi-variograms with an exponential model for each soil 

layer (horizon 1-3). This was done separately for the ROS and SCE-setups. For the bedrock layer 

(horizon 4) only very limited information regarding the spatial dependence of the hydraulic 

properties was available. Therefore, we used the variogram parameters of horizon 3 (ROS- or SCE- 

setup) for the bedrock stochastic simulations. Horizon 4 was subdivided into two parts. The upper 

bedrock parameterization (0.2 - 0.5 m thickness) mimics the high porosities and conductivities of 

the weathered sandstone and siltstone which makes lateral preferential flow though subsurface 

cracks and macropores very likely (Guo et al., 2014; Liu and Lin, 2015).  Therefore for this layer 

the lateral conductivity was enhanced by a factor of 10, which also takes the contribution of lateral 

flow by the drainage system into account. In contrast, the lower bedrock parameterization emulates 

the lower hydraulic conductivity of solid rock. In a last step, log10 , log10 n, r and s were 

estimated on the basis of their relations with log10 . These were determined from the multivariate 

normal distributions determined in the first step, for each soil horizon. The spatially heterogeneous 

log10 , renders log10 , log10 n, r, and s also spatially variable. Table 4.3 provides an overview 

of the van Genuchten soil hydraulic parameters after sampling. 
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Figure 4.3: Flowchart of four different subsurface parameter setups. The dashed line in blue 

indicates the two alternative ROSETTA (left) and SCE-UA (right) inputs. The red dashed line 

marks random sampling steps similar for both input variants. 
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Table 4.2: Ra

water content ( ), water content at saturation ( ) and a factor related to pore size distribution (n) 

for three soil horizons and the bedrock layer at the Rollesbroich site for the ROS- and SCE-

scenarios. The upper table shows the parameter range of ROSETTA pedo-transfer function, 

including the estimation of mean bedrock according to Bogena (2003), while the lower table 

indicates the range of SCE-UA optimization results at each soil horizon.  

 ROSETTA Horizon 1 Horizon 2 Horizon 3 Bedrock 

Depth [m] 0.15 0.35 1.0  1.5 3.2 

Ks [cm/day] 42.7  495.0 6.6  261.6 3.06  117.5 0.9  0.002  

  [1/cm] 0.004  0.008 0.004 - 0.007 0.004  0.02 0.005 

 [cm³/cm³] 0.06  0.1 0.05  0.09 0.04  0.09 0.07 

 [cm³/cm³] 0.45  0.66 0.36  0.57 0.29  0.55 0.3 

n 1.6  1.7 1.5  1.7 1.3  1.7 1.5 -2.0 

 

SCE-UA 

Optimization 

    

Ks [cm/day] 0.15  86.5 0.93  19.44 0.04  20.21 0.9  0.002 

   [1/cm] 0.007  0.5 0.009  0.084 0.004  0.030 0.005 

 [cm³/cm³] 0.02  0.08 0.03  0.09 0.02  0.08 0.07 

 [cm³/cm³] 0.33  0.61 0.28  0.56 0.17  0.54 0.3 

n 1.6  2.1 1.4  1.9 1.5  2.2 1.5 -2.0 

 

Table 4.3: Range of mean and standard deviation of saturated hydraulic conductivity (Ks), mean 

), mean water content at saturation 

( ), a factor related to pore size distribution (n) and range of spatial correlation for three soil 

horizons and the bedrock layer after random sampling for ROSETTA (upper) and SCE-UA 

(lower). 

 ROSETTA Horizon 1 Horizon 2 Horizon 3 Bedrock 

Depth [m] 0.15 0.35 1.0  1.5 3.2 

Corr. Range (log10 Ks ) [m] 23.6  67.5 16.5  47.1 12.4  28.05 15.6  45.9 

Ks  [cm/day] 32.36  1441.44 3.48  206.21 3.34  84.81 0.01  0.04 

   [1/cm] 0.005  0.008 0.005  0.006 0.005  0.011 0.005  0.052 

 [cm³/cm³] 0.11  0.18 0.12  0.19 0.11  0.19 0.17  0.22 

 [cm³/cm³] 0.52  0.58 0.40  0.45 0.33  0.42 0.22  0.28 

n 1.5  1.8 1.5  1.8 1.5 1.6  2.5 

     

SCE-UA 

Optimization 
    

Range [m] 16.5  29.4 15.7  33.3 14.1  47.8 14.7  31.8 

Ks  [cm/day] 0.33  20.4 0.55  16.85 0.12  8.35 0.02  0.04 

   [1/cm] 0.011  0.017 0.016  0.017 0.019  0.02 0.01  0.07 

 [cm³/cm³] 0.003  0.18 0.03  0.26 0.03  0.28 0.17  0.22 

 [cm³/cm³] 0.39  0.53 0.35  0.49 0.26  0.44 0.23  0.29 

n 1.7  2.0 1.5  1.9 1.6  1.9 1.5  2.2 
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Different averaging procedures, applied on the generated random fields of the Mualem-van 

Genuchten parameters thus result in four different conceptualizations of the subsurface 

heterogeneity: 

1. A setup with spatially homogenous  for the complete subsurface (Figure 4.4, Setup A) 

except for a different, also spatially homogeneous  for the bedrock layer. The saturated 

hydraulic conductivity was calculated by the harmonic mean of  for the individual soil 

layers weighted by the layer thickness. All other soil hydraulic parameters were 

calculated by the arithmetic mean of parameter values for individual layers, and again 

weighted by layer thickness. This is in accordance with the guidelines by Zhu and 

Mohanty (2002), who suggested arithmetic means for  and  highly correlated with . 

 

2. A layered setup (Figure 4.4, Setup B) using spatially homogeneous subsurface parameters 

log10 , log10 , log10 n,  r , s) for each of the four horizons. In contrast to setup A,  

is different for each of the four horizons. The horizontal spatial averages were calculated 

from the arithmetic means ( r, s, log10 , log10 n) or geometric means (log10 ). The 

lateral  is increased for the bedrock horizon following setup A. 

 

3. A layered setup with spatially heterogeneous, log10 , log10 , log10 n,  r , s (Figure 4.4, 

Setup C). These parameters are different for each of the 25 soil units of the Rollesbroich 

soil map. For each of these 25 texture zones four soil horizons were averaged similarly to 

setup B assuming homogeneous soil hydraulic properties for each layer. 

 

4. A layered setup with spatially heterogeneous log10 , log10 , log10 n, r , s  (Figure 4.4, 

Setup D). 

 

To address the uncertain spatial distribution of soil hydraulic parameters, we created an ensemble 

of 32 stochastic realizations for each of the four setups. Figure 4.4 provides an overview of the 

different simulation setups. 
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Figure 4.4: Schematic overview of the four investigated parameterizations for subsurface hydraulic 

parameters: homogeneous (A), layered subsurface (B), soil units and layers (C), and heterogeneous 

layers (D).  The vertical horizon extents are also indicated. The hatchings between the third and 

fourth horizon indicate the variable bedrock depth at 1.0  1.5 m. 

 

Table 4.4: Resolution, soil hydraulic parameterization and land cover of conducted ParFlow-CLM 

simulations. dicate soil hydraulic parameters obtained from 

pedo-transfer functions (ROS) or optimized (SCE) soil hydraulic properties (e.g., scenario B10ros 

stands for a layered medium (B) and soil hydraulic parameters estimated from texture 

measurements and pedotransfer function (ROS))  

Symbol Lateral Resolution 

(dx, dy) [m] 

Variable vertical 

Resolution (dz) 

[m] 

Subsurface 

Complexity 

Level 

Landuse Number of 

simulations 

A10ros 10 × 10 0.025  0.575 A grassland 32 

B10ros 10 × 10 0.025  0.575 B grassland 32 

C10ros 10 × 10 0.025  0.575 C grassland 32 

D10ros 10 × 10 0.025  0.575 D grassland 32 

A10sce 10 × 10 0.025  0.575 A grassland 32 

B10sce 10 × 10 0.025  0.575 B grassland 32 

C10sce 10 × 10 0.025  0.575 C grassland 32 

D10sce 10 × 10 0.025  0.575 D grassland 32 
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 Model Validation Strategy 4.3.2

For the two-year validation period (2011-2012), the performance of the different setups was 

compared with measured daily evapotranspiration, daily mean discharge at the catchment outlet as 

well as SWC at all functioning SoilNet sensor locations at different depths. The model performance 

was investigated with the Nash-Sutcliffe efficiency index (NSE), root mean squared error (RMSE), 

percent bias (PBIAS) or absolute bias (BIAS). The (NSE) is given by 

 

 (4.7) 

where  simulated ensemble mean values,   are the observed data,  the mean of the 

observed data, and t the time. Possible values for  range between -  

indicate unacceptable simulation performance whereas values > 0.5 indicates good performance 

(Moriasi et al., 2007; Nash and Sutcliffe, 1970). Absolute bias (  and percentage bias ( ) 

are given by:  

 

 (4.8) 

 

 (4.9) 

 

Positive values indicate an overestimation, whereas negative values imply an underestimation 

compared to the observed data. 

In addition to common goodness of fit indices, wavelet and cross-wavelet methods were deployed 

to analyze signals and their strength in both the frequency and time domain, which can unravel 

lagged signal response and correlations (Graf et al., 2014; Rahman et al., 2014). For detailed 

evaluation of SWC and its spatial variance, we use a cross-wavelet spectrum to indicate temporal 

variance as function of frequency. This approach considers scale and direction of signal correlation 

at the same time. For the wavelet transform, we use a Morlet wavelet (Torrence and Compo, 1998) 

assuming an equally spaced time series for a Gaussian modulated signal. For the detailed 

mathematical description of wavelet and cross-wavelet analysis we refer at this point to Torrence 

and Compo (1998), and Si (2008). Cross-wavelet analyses that deal with soil moisture can be found 

in Si (2008), Graf et al. (2014), and Fang et al. (2015), amongst others. 
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4.4 Results 

 Soil Moisture  4.4.1

4.4.1.1  Average Soil Water Content 

The temporal evolution of measured and simulated soil water content for the scenarios A, B, C and 

D is illustrated for SCE-setup ( ) and the ROS-setup (Figure 4.6). The measurements at the site 

show high SWC during winter months and periods with precipitation (e. g. summer 2012). The 

SWC seasonality is captured by all simulations. The highest deviation compared to the observed 

SWC can be found for the A10 scenarios (Table 4.4). The SCE and ROS-setup both underestimate 

measured SWC at 5 cm, but the mean SWC of A10ros is close to the measurements (Table 4.5). On 

the contrary, the soil water contents at 20 and 50 cm depth are overestimated by the model 

simulations of both setup alternatives. A bias of up to 0.15 cm
3
 cm

-3
 (A10ros) can be found for 

individual realizations at 50 cm depth and SWC reaches saturation during wet periods. This shows 

that homogenous A10 setups without distinct soil horizons are strongly affected by parameter 

averaging, although the simulation can match serendipitously individual soil layer averages. For 

example, the stochastic realizations of A10ros for 5 cm depth are an exception with high NSE 

(0.79; maximum 0.82), low bias (-0.01 cm
3
 cm

-3
), and low RMSE (0.032 cm

3
 cm

-3
), while the soil 

layers at 20 cm (NSE maximum: -4.0) and 50 cm (NSE maximum: -72.7) are poorly represented. 

With the introduction of soil horizons into subsurface parameterization (B10), the overall model 

bias was reduced (0.01  0.05 cm
3
 cm

-3
) and led to a performance improvement for the ROS and 

the SCE-setup and all soil horizons. Simulated SWCs by B10sce fit the observed data already well 

at 5 and 20 cm (NSE: 0.67 - 0.76). B10ros simulations also were improved but overestimated the 

average SWC for all three soil layers. In particular B10ros simulations of the uppermost layer at 5 

cm were not able to resemble well the dry periods May-June 2011 and August-September 2012. 

Simulations of the C10 complexity level exhibit in general slight improvements for the ROS and 

SCE-setup compared to the B10 scenario. For individual layers of the SCE-setup (e.g. 5 cm, 50 cm) 

even a reduction of simulation performance was found, indicating that the division in soil units 

added little additional skill to the simulations. The D10-simulations show the best representation of 

the SWC-dynamics for all three depths. The comparison of the ROS- and SCE-setups reveals that 

the D10sce simulations better reproduce the dry periods in summer 2011 and Aug.  Sep. 2012, 

whereas D10ros overestimates SWC during these periods, especially at 50 cm depth. On the other 

hand, the mean SWC of the wet period in winter is underestimated by D10sce, and D10ros is in 

better agreement with the measurements. These findings illustrate that the different stochastic 

simulation runs for both setups show an increasing ability to reproduce seasonal trends, if the 

complexity of the subsurface parameterization is increased. This is also supported by performance 

indices listed in Table 4.5 The NSE increases with increasing model complexity, whereas BIAS 

and RMSE decrease. For the SCE-setup the mean NSE increases from -0.04 (A10) to 0.78 (D10) at 
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5 cm, 0.31 (A10) to 0.70 (D10) at 20 cm, and -33.0 (A10) to 0.29 (D10) at 50cm depth. For the 

ROS-setup the mean NSE rises from 0.29 (B10) to 0.62 (D10) at 5 cm, -4.0 (A10) to 0.68 (D10) at 

20 cm, and -73.8 (A10) to -4.0 (D10) at 50cm depth. 

 

Figure 4.5: Mean soil water content as measured by SoilNet (black) and simulated by Parflow-

CLM according to the complexity levels A, B, C, and D of the SCE-setup. From top to bottom, 

average soil water contents at 5 cm, 20 cm and 50 cm depth for the years 2011 and 2012.  Standard 

deviation, minimum and maximum SWC of the 32 setup realizations are also indicated. 

 

The ensemble spread is higher for the SCE-setup than for the ROS-simulations. Within each setup 

the spread slightly increases from scenario D10 to B10, whereas A10 shows a smaller spread. The 

standard deviation of the NSE indicating the variation of performance over the stochastic 

realizations is in correspondence with these findings, indicating a smaller variation among 

realizations for the ROS-simulations. To determine the realization with the best overall soil 
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moisture characterization, we calculated the sum of RMSE at 5, 20, and 50 cm depth. Realization 

#8 of the SCE-setup and setup D10 showed the best performance with an RMSE of 0.035 cm³ cm
-3

 

at 5 cm, 0.025 cm³ cm
-3 

at 20 cm, and 0.034 cm³ cm
-3 

at 50 cm depth. For the D10 ROS-setup 

realization #13 performed best with an RMSE of 0.04 cm³ cm
-3

 at 5 cm, 0.028 cm³ cm
-3 

at 20 cm, 

and 0.04 cm³ cm
-3 

at 50 cm depth. This shows that individual realizations of heterogeneous fields 

for the soil hydraulic parameters are able to characterize average soil moisture well, even though 

they are not calibrated to measurement data. 

 

Figure 4.6: Mean soil water content as measured by SoilNet (black) and simulated by Parflow-

CLM according to the complexity levels A, B, C, and D of the ROS-setup. From top to bottom, 

average soil water contents at 5 cm, 20 cm and 50 cm depth for the years 2011 and 2012. Standard 

deviation, minimum and maximum SWC of the 32 setup realizations are also indicated. 
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Table 4.5: Model performance regarding SWC indicated by mean, standard deviation, maximum 

Nash-Sutcliffe Efficiency (NSE), average bias and root mean squared error. The accuracy indices 

were calculated with modeled and observed spatial mean soil-water-content in 5, 20 and 50 cm 

depth for different model subsurface parameterizations (A, B, C, and D). 

   Scenario 
SCE ROS 

A10 B10 C10 D10 A10 B10 C10 D10 

SWC 

5 cm 

NSE mean [-] -0.04 0.76 0.72 0.78 0.79 0.29 0.57 0.62 

NSE std. [-] 0.08 0.06 0.07 0.04 0.01 0.04 0.03 0.03 

NSE max. [-] 0.13 0.80 0.77 0.82 0.82 0.41 0.64 0.68 

BIAS mean [cm
3
 cm

-3
] -0.07 -0.02 -0.03 -0.02 -0.01 0.05 0.03 0.03 

RMSE mean [cm
3
 cm

-3
] 0.070 0.035 0.037 0.033 0.032 0.058 0.045 0.042 

20 cm 

NSE mean [-] 0.31 0.67 0.72 0.70 -4.00 -0.38 0.36 0.68 

NSE std. [-] 0.11 0.09 0.07 0.06 0.30 0.09 0.05 0.04 

NSE max. [-] 0.47 0.83 0.84 0.81 -3.85 -0.20 0.45 0.72 

BIAS mean [cm
3
 cm

-3
] 0.03 0.01 0.01 0.01 0.08 0.04 0.03 0.02 

RMSE mean [cm
3
 cm

-3
] 0.030 0.020 0.019 0.019 0.082 0.043 0.029 0.021 

50 cm 

NSE mean [-] -33.0 -0.33 -0.08 -0.29 -73.8 -8.5 -6.5 -4.0 

NSE std. [-] 1.52 0.18 0.08 0.35 2.55 0.65 0.69 0.78 

NSE max. [-] -30.3 -0.04 0.03 0.31 -72.7 -7.68 -5.74 -3.52 

BIAS mean [cm
3
 cm

-3
] 0.1 0.01 0.01 0.01 0.14 0.05 0.04 0.03 

RMSE mean [cm
3
 cm

-3
] 0.098 0.019 0.018 0.018 0.146 0.052 0.046 0.038 

 

 

Figure 4.7 displays the spatial RMSE-pattern for the D10-setups. The smallest errors can be found 

at 20 cm depth, in particular for the SCE-setup. The ROS-setup exhibits in general higher RMSEs 

and some locations with very high RMSE. For 5cm and 20cm depth outliers are found in the 

northern and western part of the catchment section, with a poor SWC reproduction for both 

parameterization setups. The local RMSEs do not show a pronounced vertical correlation as 

sensors at a particular depth are not affected by outliers in under- or overlying layers. Major 

differences between simulation results from different model setups instead are found mainly at 

locations with larger differences in soil hydraulic properties between the model setups. For 

example, sensor #7 in the south-eastern part of the study site exhibits major differences in  (ROS: 

0.00 cm
-1

; SCE: 3.0 cm
-1

), n (ROS: 1.7; SCE: 2.1), and  (ROS: 0.42 cm cm
-1

; SCE: 0.26 cm cm
-1

) 

whereas Ks (ROS: 24 cm d
-1

; SCE: 20.2 cm d
-1

) and  (ROS: 0.06 cm cm
-1

; SCE: 0.02 cm cm
-1

) 

are within the same order of magnitude. This illustrates the high dependence of the local RMSE at 

individual locations on the parameterization of soil hydraulic properties. 
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Figure 4.7: RMSE for SWC and the setup D10 (both SCE and ROS) at the individual SoilNet 

locations at 5, 20, and 50 cm depth. Only results for the southern study site are shown. 

 

4.4.1.2  Soil Moisture Variability 

Figure 4.8 illustrates the mean and standard deviation of SWC for the evaluation period (2011-

2012) for both the SCE- and ROS-setups. It gives an additional overview of the spatial SWC 

patterns for the entire model domain. In general, we find higher SWC mean in the ROS model at all 

three depths. The SCE mean reflects a higher degree of spatial organization related to the 

subsurface parameterization than the ROS-setup. For both alternatives, SWC is high near the 

channel, the Kieselbach source including the drainage system area and the center of the test site, 

whereas low SWC arise in the west and the zone between the center and northeast of the test site. 

At these locations, also the highest temporal variability within the study site was found. Low 

standard deviations mainly indicate wet areas of the domain. For these we find relative similar 

structures in the SCE- and the ROS- setup, representing also the Roßbach and Kieselbach. 
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Figure 4.8: Modelled average SWC (a) and standard deviation (b) at 5, 20 and 50 cm depth for the 

period 2011-2012 and the averages for the scenarios D10sce and D10ros. The test site is indicated 

by a white dashed line. 

 

Figure 4.9 shows the relationship between spatial mean soil water content ( ) and spatial standard 

deviation ( ) of SWC for measured and simulated data. Simulation results for the different model 

realizations and the three different depths are shown. For the period 2011  2012, we find  values 

for measured SWC of 0.06  0.08 cm
3
 cm

-3
 for 5 cm depth, 0.04  0.06 cm

3
 cm

-3
 at 20 cm, and 0.06 

 0.08 cm
3
 cm

-3
 at 50 cm depth. The comparison of uncorrected and trend corrected SWC shows 

that the overall range of  is slightly reduced (~0.05 cm
3
 cm

-3
) similar to   (~0.005 cm

3
 cm

-3
). 

Whereas the  values show no clear trend with depth, the range between maximum and minimum 

 decreases from 0.4 cm
3
 cm

-3
 to 0.1 cm

3
 cm

-3
 for the layers from 5 to 50 cm. It is found that the  

of SWC is a function of , showing a parabolic shape with a general trend of decreasing spatial 
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variability with increasing SWC, despite a local minimum between 0.3 and 0.4 cm
3
 cm

-3
. The 

simulations of the A10ros and the A10sce setup clearly underestimate measured spatial SWC 

variability with  values of 0.02  0.04 cm
3
 cm

-3
. In scenario B10, the ROS- and the SCE-setup 

exhibit a SWC variability different from each other. Whereas the  of the SCE-simulations is 0.04 

 0.06 cm
3
 cm

-3
, for the ROS-setup,  remains at the low level of A10 scenario with only slight 

improvements. The SWC variability in the C10 scenario further shows only marginal increase 

when compared to their B10 simulation counterparts of the ROS and the SCE-setup. On the 

contrary, the heterogeneous D10sce and D10ros are in good correspondence with the parabolic 

shape of the measured pattern and without an offset, in particular for low and intermediate . For 

most scenarios (A10sce D10sce; A10-C10ros) at 5 cm depth a strong decline of  values for high 

 values can be observed, which is not found in the measurements. 

 

Figure 4.9: Relationship between spatial mean soil water content ( ) and standard deviation of soil 

water content ( ), both for measured data from SoilNet (black), modeled data according the SCE-

setup (red), and modeled data following the ROS-setup (blue). Results for three different depths (5 

cm, 20 cm, and 50 cm) are shown for the four setups with 10 × 10 m lateral resolution (A10, B10, 

C10 and D10). The soil water content at the x-axis was classified into intervals of 10
-2

 [cm³ cm-3]. 

The standard deviations on the y-axis are the values for each depth and SWC interval.  
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Figure 4.10 provides additional information on the best D10 simulations of the ROS and SCE-

setups with focus on differentiation between wetting and drying events. The SCE-simulation #8 for 

scenario D10 better resembles the range for  and  in 5 and 20 cm depth of the observations than 

the ROS-simulation (D10ros s13) which shows a smaller  and  range for wetting and drying. 

Figure 4.10 further illustrates the differences in the relationship between  and  for the ROS- and 

the SCE-simulation. The decline of  values for high  values is either not present (D10ros 5 cm) 

or less pronounced in the ROS simulation (D10ros 20, 50 cm) than in the SCE-simulation. The 

relationship of  and  is quite similar for wetting and drying events and both for the ROS- and 

the SCE-setup. An exception is D10ros s13, where we find a definite linear shape for drying 

events, while wetting events show larger scatter, but do not cover the range of observations. 

We further examined the temporal course of the  simulation average (Figure 4.11) using cross-

wavelet analysis. In combination with daily precipitation, we expect more information about the 

temporal evolution of modelled  compared to the observations during wetting and drying events. 

Furthermore, the time-window and direction of the correlation between modelled and observed 

data can unravel time lagged differences between the modelled  and observed . Although both 

the SCE and ROS-setup capture the general  variability level over the entire evaluation period 

well, we find high seasonal differences in  between measured and modeled data during both 

years of the study period. The modelled  by the ROS-setup shows smaller variations over the 

year than the observations. On the other hand, the modelled  by the SCE-setup exhibits high 

fluctuations in particular through the summer period 2011, associated with strong precipitation 

events. For these events as well as for the winter period 2011/12  of the SCE-setup decreases to 

50 % of the observed level. This reduction can also be found in the ROS-setup but is less distinct 

there. The variability over the individual ROS-simulations is high over the entire evaluation period. 

On the contrary, the SCE-setup has maximum variability of only ± 0.01 cm³ cm
-3

 between the 

scenario realizations during dry periods (May-June 2011, October-December 2011). For these 

periods the ROS- and the SCE-setup cover or partly overestimate the  observations. The SCE-

setup thereby shows high but time-lagged or inverse correlation with the observed  (R
2 

> 0.8). 

These time-lagged or inverse correlations with observed  occur over longer time intervals (up to 

32 days) than between the ROS-setup and the observations. During these dry periods, the simulated 

 signal turns upward and recovers from the  decrease which was simulated in relation to 

intensive precipitation events. However, in 2012 the correlation for the SCE-based  is almost 

synchronous with the observations in wet periods. This indicates a high temporal coherence 

between measurement data and the SCE-setup simulations. From July to August 2012,  of 

observation and SCE-setup simulations exhibit a similar decrease of . This is in contradiction to 

the ROS-setup exhibiting short periods with inverse or shifted correlations indicating less signal 

coherence of . 
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Figure 4.10: Standard deviation of soil water content ( ) as function of mean soil water content 

( ) for measured SoilNet data, modeled data from the best D10sce simulation s8(left) and best 

D10ros simulation s13(right). The histograms of SWC and SWC standard deviation also indicate 

the frequencies of observed and modelled data split into wetting and drying events. 
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Figure 4.11: Observed and simulated  with uncertainty for the SCE and ROS setups (middle row 

of figures) and scenario D10 at 5 cm depth using wavelet coherence analysis (lowest row of 

figures). The local R2 in domain and frequency is indicated by color codes and significant 

correlations at the 95 % level between simulation and observations. The arrows indicate the phase 

angle for R²> 0.5. Arrow on the right connotes synchronous correlation, whereas an arrow on the 

left point out anti correlation. Downward or upward arrows indicate a delayed signal correlation. 

Precipitation (P) is also indicated. 

 

 Evapotranspiration Dynamics 4.4.2

The simulated evapotranspiration is in good correspondence with the measured actual ET (ETa). 

Both the SCE and ROS setups have high NSE, small bias and RMSE (Table 4.6) in comparison 

with the observed lysimeter (NSE: 0.76 - 0.77; bias: -0.12 - -0.07 mm d
-1

; RMSE: 0.64 - 0.66 mm 

d
-1

) and EC data (NSE: 0.64 - 0.66; bias: -0.16 - -0.11 mm d
-1

; RMSE: 0.75 - 0.76 mm d
-1

). The 

different simulation scenarios for each of the setups only show very small NSE differences (~10
-3

). 

The performance indices do not show a clear trend as function of the complexity of the subsurface 

parameterization. The simulations of the ROS-setup exhibit a slightly better performance than their 

SCE counterparts. The simulations of all scenarios slightly underestimate the monthly ET of 

lysimeter and EC data, however, in June 2012 simulations overestimate ET compared to lysimeter 

(0.15 mm d
-1

) and EC data (0.19 mm d
-1

). Figure 4.12 reveals that daily ETa EC (and also ETa LYS; 

not shown) show more variability in ET between different days in the summer than simulated ET. 

While the simulations underestimate measured peak ETa on summer days with (intensive) 

precipitation events, they overestimate ET observations on dry days. In contrast, the ET-dynamics 

for the different ROS- and SCE-scenarios hardly differ from each other. Daily ET of ROS-

simulations is slightly higher than for SCE comparing scenarios with the same complexity. The 
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highest ETa difference (~ 1mm d
-1

) between ROS and SCE is found for the dry period April  June 

2011 for the scenarios B, C, and D. The difference in actual ET between the A10 SCE- and ROS-

scenarios and the layered SCE-scenarios (B10 - D10) can be explained by lower SWC in the latter, 

which result in somewhat reduced transpiration and soil evaporation. 

 

Table 4.6: Accuracy indices calculated with modeled and observed mean catchment 

evapotranspiration for subsurface parameterizations A10, B10, C10, and D10. Mean, standard 

deviation NSE, average bias and root mean squared error are shown for lysimeter and EC 

evapotranspiration for 2012. 

Scenario 
SCE ROS 

A10 B10 C10 D10 A10 B10 C10 D10 

ET 

NSE mean 

[-] 

LYS 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.77 

EC 0.64 0.64 0.64 0.64 0.65 0.65 0.65 0.65 

NSE std 

[-] 

LYS 0.003 0.003 0.003 0.004 0.001 0.002 0.002 0.002 

EC 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 

BIAS mean  

[mm d
-1

] 

LYS -0.09 -0.11 -0.11 -0.12 -0.078 -0.069 -0.072 -0.076 

EC -0.13 -0.15 -0.15 -0.16 -0.12 -0.11 -0.11 -0.12 

RMSE mean  

[mm d
-1

] 

LYS 0.65 0.66 0.66 0.66 0.64 0.64 0.64 0.64 

EC 0.75 0.76 0.76 0.76 0.75 0.75 0.75 0.75 

 

 

 

Figure 4.12: Simulated mean daily ET for different complexity levels (A10-D10) of the SCE- and 

ROS-setup. Observed ETa EC is also indicated for 2012. 
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 Discharge Dynamics 4.4.3

The discharge dynamics of 2011 and 2012 are illustrated in Figure 4.13. The discharge 

measurements at the catchment outlet show a period with high flow during winter rain and snow 

melt periods (Dec  Apr) and low flow conditions from May  November. Exceptions were 

June/July 2012 and end of August 2012 due to high precipitation and thunderstorms leading to 

flooding. 

 

 

Figure 4.13: Observed and simulated daily mean logarithmic discharge at the catchment outlet for 

2011-2012. Shown are alternative subsurface setups (SCE/ROS) with scenarios of different 

complexity (A10-D10).  Precipitation for this period is indicated as well. 
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Mean Nash-Sutcliffe-Efficiencies (Table 4.7) ranging from -1.71 - -0.93, and high model bias (30  

14 %), indicate a poor model performance for discharge simulation for both model setups 

(ROS/SCE) and for all scenarios (A10  D10). With increasing complexity we found a slight 

improvement of these performance indices for both the ROS- and SCE- setup (e. g. RMSE A10sce: 

8.01 m³ h
-1

; RMSE D10sce: 3.69 m³ h
-1

). The model simulations tend to overestimate discharge 

peaks particularly during winter conditions and thunderstorms. By removing these events (ca. 34 

days), an increasing NSE (0.34  0.41) indicates a better performance for the remaining data. 

However, during low flow conditions in dry periods (e. g. Aug. Sep. 2011 and 2012) the 

simulations overestimate the measured discharge. The tendency of the Kieselbach running dry 

during summer seasons (which is not observed in the data) is found for scenarios with less 

complexity. The highest variability among the individual realizations for the different scenarios is 

found in summer 2011, for both the SCE and ROS setups. 

Table 4.7: Discharge model performance at the catchment outlet for subsurface parameterizations 

A10, B10, C10, and D10 indicated by mean, standard deviation, maximum Nash-Sutcliffe 

Efficiency (NSE), average bias and root mean squared error. 

        Scenario 
SCE ROS 

A10 B10 C10 D10 A10 B10 C10 D10 

Q 

NSE mean [-] -1.70 -1.05 -1.08 -0.93 -1.74 -1.71 -1.59 -1.30 

NSE std. [-] 0.04 0.29 0.26 0.22 0.02 0.03 0.05 0.13 

NSE max. [-] -1.64 -0.52 -0.55 -0.37 -1.71 -1.68 -1.51 -1.03 

BIAS mean % 30.5 15.7 14.6 14.0 29.6 28.0 24.1 22.3 

RMSE mean [m
3 
h

-1
] 8.01 4.12 3.89 3.69 7.77 7.35 6.32 5.83 

 

 

 Water Balance 4.4.4

Table 4.8 provides an overview of different water balance components including discharge, 

evapotranspiration and precipitation for the two evaluated years. Both, the ROS- and the SCE-setup 

simulations, show a small inter-annual variability as well as small differences between the 

individual complexity levels. Compared to the observations of ET-EC and ET-LYS in 2012 the 

simulations underestimate measured ET by up to 55 mm (D10sce). The annual measured sum of 

discharge is 429.3 mm in 2011 and 797.6 mm in 2012. Precipitation was also larger in 2012 (1251 

mm) than in 2011 (1084 mm). Whereas the model simulations on average strongly overestimate the 

discharge for 2011 (up to ca. 300 mm difference), the discharge is underestimated by most 

simulations (ca. 160 mm difference) in 2012. The residuals of the observed water balance in 2012 

are -7.7 % for the EC data and -9.3 % for the lysimeter data. For the simulations, we found water 

balance residuals up to -16 % (A10ros 2011) and +8 % (C10sce 2012). Another important 

difference between reality and simulations is probably related to snow cover, which leads to 
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delayed infiltration and discharge affecting the subsequent annual water balance. We estimated a 

potential storage error up to 8 % related to the unknown exact partitioning of mixed precipitation in 

liquid or solid. The model also does not account for frozen soils and impaired runoff related to 

frozen soils which might lead to further balance deviations. Thus, the water balance residuals are 

within an acceptable range compared to the observed residuals. The water balance for the ROS-

setup has smallest residuals for all complexity stages in 2012 (0.5  3.2 %) and higher residuals in 

2011 (-15.9 - -5.0 %), which is related to the higher discharge and evapotranspiration. In contrast, 

the SCE-setup exhibits intermediate negative and positive residuals in both years (-15.5  0.7). 

With decreasing subsurface heterogeneity, we find a decreasing positive residual for 2012, while 

the negative residual for the SCE and ROS-setup increased for 2011. These residuals are mostly 

related to the quality of the simulated discharge. 

 

Table 4.8: Observed and simulated yearly water balance components precipitation (P), 

evapotranspiration (ET) and surface runoff (Q) of the Rollesbroich catchment for different 

subsurface scenarios.    

OBSERVATION 

Period 
P ET Q P-ET-Q 

[mm] [mm] [mm] [mm] % 

2011 1,083.6 n/a 429.3 n/a n/a 

2012 1,251.7 
566 (LYS) / 

552 (EC) 
797.6 

-111.9  (LYS) / 

-97.9 (EC) 

-8.9 (LYS) / 

-7.8 (EC) 

 

TerrSysMP-

SIMULATION 

Scenario Period 
P 

[mm] 

ET 

[mm] 

Q 

[mm] 

P-ET-Q 

[mm] % 

A10ros 
2011 1,083.6 523.3 732.2 -171.9 -15.9 

2012 1,251.7 530.2 714.8 6.7 0.5 

A10sce 
2011 1,083.6 512.5 738.6 -167.5 -15.5 

2012 1,251.7 524.5 718.4 8.8 0.7 

B10ros 
2011 1,083.6 531.4 720.4 -168.2 -15.5 

2012 1,251.7 533.4 708.6 9.7 0.8 

B10sce 
2011 1,083.6 505.5 648.5 -70.4 -6.5 

2012 1,251.7 517.5 643.2 91.0 7.3 

C10ros 
2011 1,083.6 529.8 695.9 -142.1 -13.1 

2012 1,251.7 532.5 687.6 31.6 2.5 

C10sce 
2011 1,083.6 504.1 643.8 -64.2 -5.9 

2012 1,251.7 516.9 635.6 99.1 7.9 

D10ros 
2011 1,083.6 529.1 679.5 -124.9 -11.5 

2012 1,251.7 531.0 680.3 40.4 3.2 

D10sce 
2011 1,083.6 505.3 632.8 -54.5 -5.0 

2012 1,251.7 516.2 634.7 100.8 8.1 
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4.5 Discussion 

Our findings suggest that spatial heterogeneous soil hydraulic parameters and subsurface 

complexity dominate the observed spatial variability of SWC at the small headwater catchment 

scale. The spatial SWC variability for the individual soil horizons increases as function of 

heterogeneity of soil hydraulic parameters for both setups (ROS/SCE). For the complex scenario 

D10, with fully heterogeneous fields of the soil hydraulic parameters, the SWC variability for the 

ROS and the SCE-setups are similar and comparable to the measurements. On the contrary, for the 

A10 scenario both setup alternatives (SCE/ROS) exhibit on average a similar low  

(0.02 cm
3
 cm

-3
) which is much lower than  for the measurements. Given the model setup for this 

catchment with spatially uniform vegetation and atmospheric forcings, the SWC variability for 

homogeneous simulations can be seen as base variability induced by topography. This is 25  40 % 

of the  detected by the observations (i.e., 0.06 0.08 cm
3
 cm 

-3
). The introduction of a layered 

structure (B10) leads to a significant increase of SWC variability, whereas the introduced 

additional zonal heterogeneity of C10 shows only a minor impact. In fact fully spatially 

heterogeneous fields are needed to explain the observed SWC spatial variability.  

Selected simulations with a satisfying reproduction of SWC at 5, 20 and 50 cm depth give further 

insight in the limitations and uncertainty of the model simulations. Whereas the D10 SCE-

simulation is able to reproduce the relationship of mean SWC and  for drying events, this is less 

the case for wetting events. During some precipitation events (e.g. thunderstorms during the dry 

summer period 2011) the decreasing  for both modelling setups contrasts with an observed 

increase in . These results indicate that the ability of the simulations to reproduce the observed 

 is related to the antecedent soil moisture state. For the nearby Wüstebach site, Rosenbaum et al. 

(2012) and Wiekenkamp et al. (2016) reported that infiltration excess decreases observed  during 

wet periods. In contrast, an increase of  during intensive rain events and dry conditions was 

attributed to preferential flow. This was also observed in other field studies by Martini et al. (2015) 

and Poltoradnev et al. (2016). Our simulation results of both setups show that during these 

situations, infiltration excess leads to a decreasing  for the simulations, which do not take fast 

bypass water flow within macrospores into account. However, the SCE-setup partly reproduces 

temporal dynamics of  in particular for periods with average soil moisture conditions in 2012. 

The ROS-simulations, on the contrary, poorly represent the temporal evolution of , although 

having an overall  level similar to the observations. These findings indicate that the SWC-

variability is dominated by spatially variable soil hydraulic parameters, although impacts due to 

spatial variable atmospheric forcing (i.e. precipitation) or vegetation variations in the uniform grass 

cover cannot be excluded completely.  

Furthermore, these conclusions are based on the assumption that after trend correction the 

remaining observation error is related to small random noise, which does not affect the overall level 
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of spatial variation. Systematic bias of individual sensors or strong white noise lead to a potential 

overestimation of spatial SWC variability and therefore to overestimating the subsurface 

heterogeneity in the simulations. Although an error in absolute SWC measurements cannot be 

completely excluded, it seems unlikely given the number of redundant sensors and trend correction 

for individual sensors. 

The results further indicate that 1D inversely estimated soil hydraulic properties of the SCE-setup 

result in a better characterization of SWC at catchment scale than their counterparts estimated from 

soil texture data via pedo-transfer function (ROS). The range of RMSE for SCE-setup simulations 

at the individual locations (5 cm: 0.033 cm
3
 cm

-3
; 20 cm: 0.019 cm

3
 cm

-3
; 50 cm: 0.018 cm

3
 cm

-3
) is 

similar or smaller than for the ROS-setup (5 cm: 0.042 cm
3
 cm

-3
; 20 cm: 0.021 cm

3
 cm

-3
; 50 cm: 

0.038 cm
3
 cm

-3
) suggesting more accurate results for the SCE-setup. The good agreement between 

observed and simulated spatio-temporal SWC (scenario D10, in particular for the SCE-setup) is in 

correspondence with the findings of Qu et al. (2014). This implies that lateral water movement 

plays a minor role for soil moisture characterization of the upper soil horizons (5, 20, 50 cm) as soil 

hydraulic parameters obtained from 1D inverse calibrations also performed relatively well as 

hydraulic parameters for the 3D distributed model. The layered SCE-setup model scenarios were 

able to simulate the relatively high spatial SWC variability at 50 cm compared to the 5 and 20 cm 

observations. According to Qu et al. (2014), this pattern can be attributed to the pedological 

situation of the study site.   

While lateral flow is not important for the upper layers, it is for the shallow groundwater present at 

the site. The sapprolite layer drains the water fast from the overlaying soil layers and routes it 

laterally to the catchment outlet. The strong lateral flow component is also important in areas where 

the drainage system is installed. For the modelling of the Rollesbroich site, the lateral flow 

therefore becomes more important for the bedrock horizon. This is different from the nearby 

Wüstebach site, a forested headwater catchment of similar size and pedological characteristics 

(Rosenbaum et al., 2012). For the Wüstebach site, Cornelissen et al. (2014) and Fang et al. (2015) 

found only a minor importance of the bedrock horizon and its model parameterization. Cornelissen 

et al. (2014) reported a slight improvement for the modelling at the Wüstebach site (lower peak 

discharges more in correspondence with the data) if available bedrock information was considered. 

The ROS and the SCE-setup result in total yearly ET close to observed ET of lysimeter and EC-

station, which is also close to potential ET. ROS gives a consistently higher ET than the SCE 

scenarios (15 - 25 mm/year) due to higher SWCs of the ROS-setup compared to the SCE SWCs. 

This leads in general to higher ET closer to the measured ET. This can be attributed to the smaller 

values for the soil hydraulic parameter  (air entry pressure) and in spite of higher values for the 

saturated hydraulic conductivity. A number of factors can potentially explain the difference to 

observed ET: errors in the meteorological forcing data (especially incoming shortwave radiation 
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and wind speed), vegetation parameters or model structural errors. For example, an 

underestimation of the LAI or rooting depth potentially leads to underestimation of transpiration 

and interception loss. Although we adjusted rooting depth for the site specific grass species, the C3 

grass parameterization in CLM relies on global average characteristics. It is also found that land 

surface models differ greatly in the semi-empirical relationships of ET-reduction as function of soil 

saturation, which points to poor constraints on the ET-process and the possibility of a significant 

model structural error. Finally, processes not accounted for in the simulations, such as grass harvest 

and maintenance, may result in deviations between measurement data and model. Grass harvest 

was already found to explain differences between ETa of the lysimeters and the eddy covariance 

EC method (Gebler et al., 2015). It should be noted that maintenance most likely affected SWC 

variability as the investigated area is characterized by uniform grass cover. 

For both subsurface model setups (SCE/ROS) and all complexity levels, runoff could not be 

reproduced well, although the SCE-setup showed a marginal but insignificant better performance 

compared to the ROS-setup. With increasing complexity of the subsurface parameterization the 

performance of the ROS and the SCE-setups slightly improved in our simulations. This could be 

explained with spatial averaging in particular for the homogeneous scenario, which led for this 

scenario to reduced infiltration rates for the uppermost layers. This results in increased runoff 

excess and higher runoff peaks for moderate and intensive precipitation events. On the other hand, 

for the complex heterogeneous scenario D10, a downhill re-infiltration after infiltration excess 

becomes more likely. Uncertainties with respect to the infiltration properties can therefore be better 

compensated with increasing complexity or variability of soil hydraulic parameters (Herbst et al., 

2006). The comparison of the simulated ET time series with observations also indicates that runoff 

is affected by short-term ET fluctuations. During summer days with precipitation events, ETa LYS 

and ETa EC are up to 20 % higher than the simulated ET for both setups which also accounts for 

intercepted water. This partly explains simulated peak runoff in summer as an extra amount of 

water potentially contributes to direct runoff. Generally, the poor model performance of this 

physically based hydrological model for reproducing discharge can be attributed to model 

parameter uncertainty, structural model issues or insufficient or incorrect other input information 

(Binley and Beven, 1992; Vázquez et al., 2008). For example, preferential flow due to macropores 

also strongly affects the infiltration process (Weiler and Naef, 2003) and is potentially 

underrepresented for this grassland site with intensively rooted topsoil layers. Furthermore, the 

contradiction between the relatively good reproduction of SWC for the upper soil layers (5, 20, 

50 cm) and poor discharge simulations suggests a potential issue with the lower subsurface layers. 

Interflow and groundwater flow at the study site are affected by bedrock characteristics and the 

installed drainage system, whose parameterization in the model is affected by substantial 

uncertainty due to a lack of information. This also affects base flow as fractured bedrock might act 

as additional storage (Hale et al., 2016). Another aspect that can contribute to the poor discharge 
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simulation is the discretization of the channel bed. The 2d sheet flow in ParFlow is directly linked 

to the pressure head of the individual grid cell. Given the size of the small Kieselbach channel 

(0.3-1.0 m), discharge can be affected by uncertainty in topography although calculated from 

1 × 1 m DEM. This includes also the interaction between surface water and groundwater. An 

underestimation of the water level in a too broad channel leads to a reduction of the vertical 

pressure gradient. Subsequently, less water re-infiltrates into the subsurface from the channel. It is 

also imp

coefficient) was not an objective in this study. Accordingly, the full parameter space relevant for 

discharge parameter calibration was not explored, and much better results could be achieved by 

parameter calibration. 
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4.6 Conclusions 

This study investigated the effect of different soil hydraulic parameterization schemes of the 

ParFlow-CLM component of the TerrSysMP framework for modelling a grassland headwater 

catchment in the Eifel (Germany). Therefore model runs at 10 × 10 m lateral resolution, a variable 

vertical resolution (0.025-0.575 m), and different complexity levels regarding the parameterization 

of subsurface hydraulic parameters were conducted. For each model complexity level 

(homogeneous, homogeneous layers, homogeneous layers differing between different soil units, 

and fully heterogeneous subsurface generated by stochastic simulations), we performed 

calculations with 32 stochastic realizations. These stochastic realisations had different values for 

saturated hydraulic conductivity and the Mualem-vanGenuchten parameters. The simulations with 

the four different complexity levels of subsurface soil hydraulic parameterization were conducted 

with two different setups. One setup was on the basis of measured soil hydraulic properties (ROS) 

and the other setup on the basis of inversely estimated soil hydraulic properties from 1D 

simulations (SCE). We subsequently investigated the model performance to reproduce soil water 

content, evapotranspiration, discharge and the overall water balance with common performance 

indices (Nash-Sutcliffe efficiency, RMSE, and model bias) as well as cross-wavelet analysis. In 

particular, we focused on the spatial and temporal soil moisture patterns and spatial soil water 

content variability in the southern part of the study site. 

The results indicate that heterogeneous soil hydraulic parameters together with topography can 

explain the overall spatial variability of SWC. Given the fact that homogeneous soil hydraulic 

parameters alone only explained a small portion of the spatial variability of SWC, it can be argued 

that a heterogeneous distribution of soil hydraulic parameters is more important to explain the 

spatial variability of SWC than topography. All model simulations are able to reproduce the 

temporal seasonal variability of ET. However, short-term ET dynamics were underestimated 

compared to the observations affecting the poor discharge reproduction in summer. In contrast, 

discharge could not be reproduced well, showing particularly high model bias during winter high 

flow events. This can probably be related to the lack of information about bedrock characteristics 

and its interaction with the on-site drainage system. In addition, discharge is highly sensitive to soil 

hydraulic parameters and preferential flow and therefore other parameter configurations could 

result in a better performance than the calculated uncalibrated model stochastic realizations. The 

analysis nevertheless shows the enormous challenge to obtain good discharge predictions with a 

physically based hydrological model.  

The SCE-setup outperforms in general the ROS-setup. The higher inverse air entry parameter used 

for the SCE-simulations induced better SWC dynamics during dry periods illustrating the difficulty 

to transfer small scale measurements of soil hydraulic parameters to the larger scale and that 1D 

inversely estimated parameters result in a better performance. It also illustrates that interpolated 1D 
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inverse parameter estimates result in an acceptable performance for the catchment, in spite of the 

fact that lateral flow processes were not considered in the 1D calibrations.  

Our study shows that process based, fully integrated models applied at the small catchment scale, 

in combination with various types of measurement data available at a high spatio-temporal 

resolution can potentially be a valuable tool not only for unraveling structural model errors, but 

also for improving the monitoring network. However, for physically based integrated modelling a 

better fusion with measurement data is needed, which can for example be achieved with data 

assimilation. This would give further insights in structural model deficits and increase data value. 
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